Browsing by Subject "Harmonic analysis"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Open Access Bessel functions-based reconstruction of non-uniformly sampled diffraction fields(IEEE, 2007) Uzunov, V.; Esmer, G. Bora; Gotchev, A.; Onural, Levent; Özaktaş, Haldun M.A discrete computational model for the diffraction process is essential in forward problems related to holographic TV. The model must be as general as possible, since the shape of the displayed objects does not bear any restrictions. We derive a discrete diffraction model which suits the problem of reconstruction of diffraction fields from a set of non-uniformly distributed samples. The only restriction of the model is the wave nature of the field. The derivation takes advantage of changing the spatial and frequency coordinates to polar form and ends up with a model stated in terms of Bessel functions. The model proves to be a separable orthogonal basis. It shows rapid convergence when evaluated in the framework of the non-uniform sampling problem.Item Open Access The Fractional Fourier transform and harmonic oscillation(Springer, 2002) Kutay, M. A.; Özaktaş, Haldun M.The ath-order fractional Fourier transform is a generalization of the ordinary Fourier transform such that the zeroth-order fractional Fourier transform operation is equal to the identity operation and the first-order fractional Fourier transform is equal to the ordinary Fourier transform. This paper discusses the relationship of the fractional Fourier transform to harmonic oscillation; both correspond to rotation in phase space. Various important properties of the transform are discussed along with examples of common transforms. Some of the applications of the transform are briefly reviewed.Item Open Access Free expansion of two-dimensional condensates with a vortex(Institute of Physics Publishing, 2003) Hoşten, O.; Vignolo, P.; Minguzzi, A.; Tanatar, Bilal; Tosi, M. P.We study the free expansion of a pancake-shaped Bose-condensed gas, which is initially trapped under harmonic confinement and containing a vortex at its centre. In the case of a radial expansion holding the axial confinement fixed we consider various models for the interactions, depending on the thickness of the condensate relative to the value of the scattering length. We are thus able to evaluate different scattering regimes ranging from quasi-three-dimensional (Q3D) to strictly two-dimensional (2D). We find that as the system goes from Q3D to 2D the expansion rate of the condensate increases whereas that of the vortex core decreases. In the Q3D scattering regime we also examine a fully free expansion in 3D and find oscillatory behaviour for the vortex core radius: an initial fast expansion of the vortex core is followed by a slowing down. Such a nonuniform expansion rate of the vortex core implies that the timing of its observation should be chosen appropriately.Item Open Access Implications of energy conditions on standard static space-times(Pergamon Press, 2009) Dobarro, F.; Ünal, B.In the framework of standard static space-times, we state a family of sufficient or necessary conditions for a set of physically reasonable energy and convergence conditions in relativity and related theories. We concentrate our study on questions about the sub-harmonicity of the warping function, the scalar curvature map, conformal hyperbolicity, conjugate points and the time-like diameter of this class of space-times. © 2009 Elsevier Ltd. All rights reserved.Item Open Access Independent estimation of input and measurement delays for a hybrid vertical spring-mass-damper via harmonic transfer functions(IFAC, 2015-06) Uyanık, İsmail; Ankaralı, M. M.; Cowan, N. J.; Saranlı, U.; Morgül, Ömer; Özbay, HitaySystem identification of rhythmic locomotor systems is challenging due to the time-varying nature of their dynamics. Even though important aspects of these systems can be captured via explicit mechanics-based models, it is unclear how accurate such models can be while still being analytically tractable. An alternative approach for rhythmic locomotor systems is the use of data-driven system identification in the frequency domain via harmonic transfer functions (HTFs). To this end, the input-output dynamics of a locomotor behavior can be linearized around a stable limit cycle, yielding a linear, time-periodic system. However, few if any model-based or data-driven identification methods for time-periodic systems address the problem of input and measurement delays in the system. In this paper, we focus on data-driven system identification for a simple mechanical system and analyze its dynamics in the presence of input and measurement delays using HTFs. By exploiting the way input delays are modulated by the periodic dynamics, our results enable the separate, independent estimation of input and measurement delays, which would be indistinguishable were the system linear and time invariant. © 2015, IFAG.Item Open Access Novel microstrip fed mechanically tunable combline cavity filter(IEEE, 2013) Kurudere, S.; Erturk, V. B.A novel configuration for mechanically tunable combline bandpass filters is proposed, where the classical resonating rod-tuning screw combination is replaced with a simple printed circuit-tuning screw combination. Moreover, because a printed circuit structure that uses metal vias forms the bottom part of the cavity, the coaxial type feeding and the coaxial to cavity matching of classical combline filters are also replaced with a microstrip feeding. Consequently, the proposed configuration provides smaller size, less weight, integration with other printed circuits and significant simplification in the fabrication process. A prototype filter is designed and fabricated for verification. The measured results are in good agreement with the simulation, and the filter exhibits very good harmonic suppression.Item Open Access Novel SIW based interdigital bandpass filter with harmonic suppression(IEEE, 2014) Kurudere, S.; Ertürk, Vakur B.A novel configuration for substrate integrated waveguide (SIW) based bandpass filter with interdigital type resonators is presented. In the proposed structure, interdigital type resonators consisting of vias and circular caps at top of them are combined into a bowtie SIW structure. SIW is fed by a tapered microstrip line transition providing low loss and good matching. In order to improve harmonic suppression performance of the filter, the dumbbell shaped defected ground structure (DGS) is etched to the ground side of the microstrip line feeding section. The proposed filter structure is put in a conducting box in order to improve attenuation levels at the band edges and prevent radiation to the outside. The prototype is designed at 9 GHz center frequency with 500 MHz bandwidth, analyzed and fabricated for verification. The measurement results are in good agreement with the simulations, and the filter exhibits more than 30 dB harmonic suppression.Item Open Access Simulation of millimeter-wave gunn oscillations in gallium nitride(2004) Sevik, C.; Bulutay, C.High field transport in wide bandgap semiconductors like GaN is of great technological importance. The negative differential mobility regime at high fields, under suitable conditions, can lead to millimeterwave Gunn oscillations. Using extensive simulation based an ensemble Monte Carlo technique, the prospects of GaN Gunn diodes are theoretically investigated. The possibility of operating these Gunn diodes at their higher harmonic modes are explored. The main finding of this research is that the carrier dynamics in GaN can be tailored by an optimum choice of doping profile, temperature and bias conditions so that the efficiency of higher harmonic Gunn oscillations can be boosted. Finally, the physical origin of these Gunn oscillations is sought exploring whether it is the intervalley scattering mechanism, the Γ valley nonparabolicity, or the effective mass discrepancy between the Γ and the lowest satellite valleys as the responsible mechanism.Item Open Access SIW‐based interdigital bandpass filter with harmonic suppression(John Wiley and Sons Inc., 2015) Kurudere, S.; Ertürk, V. B.A novel configuration of interdigital bandpass filter based on the substrate integrated waveguide (SIW) technology is proposed. In addition to the interdigital resonators in SIW that determine the main response/characteristics of the filter, narrowing the width of the SIW at the center of the filter and additional vias at its input and output parts act as two additional control mechanisms to achieve the desired filter response. Moreover, dumbbells are etched to the ground side of the microstrip feeding sections at both ends of the filter to improve its harmonic suppression. A prototype filter is designed and fabricated for verification. The measured results are in good agreement with the simulations, and the filter exhibits very good harmonic suppression. © 2015 Wiley Periodicals, Inc.Item Open Access Ultra-low timing-jitter passively mode-locked fiber lasers for long-distance timing synchronization(SPIE, 2006) İlday, F. Ömer; Winter, A.; Kim J.-W.; Chen, J.; Schmüser, P.; Schlarb, H.; Kärtner, F. X.One of the key challenges for the next-generation light sources such as X-FELs is to implement a timing stabilization and distribution system to enable ∼ 10 fs synchronization of the different RF and laser sources distributed in such facilities with distances up to a few kilometers. These requirements appear to be beyond the capability of traditional RF distribution systems based on temperature-stabilized coaxial cables. A promising alternative is to use an optical transmission system: A train of pulses generated from a laser with low timing jitter is distributed over length-stabilized fiber links to remote locations. The repetition frequency of the pulse train and its higher harmonics contain the synchronization information. At the remote locations, RF signals are extracted simply by using a photodiode and a suitable bandpass filter to pick the desired harmonic of the laser repetition rate. Passively mode-locked Er-doped fiber lasers provide excellent long-term stability. The laser must have extremely low timing jitter, particularly at high frequencies (>1 kHz). Ultimately, the timing jitter is limited by quantum fluctuations in the number of photons making up the pulse and the incoherent photons added in the cavity due to spontaneous emission. The amplitude and phase noise of a home-built laser, generating 100-fs, 1-nJ pulses, was characterized. The measured phase noise (timing jitter) is sub-10 fs. from 1 kHz to Nyquist frequency. In addition to synchronization of accelerators, the ultra-low timing jitter pulse source can find applications in next-generation telecommunication systems.Item Open Access Wafer bonded capacitive micromachined underwater transducers(IEEE, 2009-09) Olcum, Selim; Oǧuz, Kaan; Şenlik, Muhammed N.; Yamaner F. Y.; Bozkurt, A.; Atalar, Abdullah; Köymen, HayrettinIn this work we have designed, fabricated and tested CMUTs as underwater transducers. Single CMUT membranes with three different radii and 380 microns of thickness are fabricated for the demonstration of an underwater CMUT element. The active area of the transducer is fabricated on top of a 3″ silicon wafer. The silicon wafer is bonded to a gold electrode coated glass substrate wafer 10 cm in diameter. Thermally grown silicon oxide layer is used as the insulation layer between membrane and substrate electrodes. Electrical contacts and insulation are made by epoxy layers. Single CMUT elements are tested in air and in water. Approximately 40% bandwidth is achieved around 25 KHz with a single underwater CMUT cell. Radiated pressure field due to second harmonic generation when the CMUTs are driven with high sinusoidal voltages is measured. ©2009 IEEE.