Browsing by Subject "Graphene layers"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Implementation of graphene multilayer electrodes in quantum dot light-emitting devices(Springer Verlag, 2015) Wolff, S.; Jansen, D.; Terlinden H.; Kelestemur, Y.; Mertin W.; Demir, Hilmi Volkan; Bacher G.; Nannen, E.Graphene is a highly attractive candidate for implementation as electrodes in next-generation large-area optoelectronic devices thanks to its high electrical conductivity and high optical transparency. In this study, we show all-solution-processed quantum dot-based light-emitting devices (QD-LEDs) using graphene mono- and multilayers as transparent electrodes. Here, the effect of the number of graphene layers (up to three) on the QD-LEDs performance was studied. While the implementation of a second graphene layer was found to reduce the turn-on voltage from 2.6 to 1.8 V, a third graphene layer was observed to increase the turn-on voltage again, which is attributed to an increased roughness of the graphene layer stack. © 2015, Springer-Verlag Berlin Heidelberg.Item Open Access Surface evolution of 4H-SiC(0001) during in-situ surface preparation and its influence on graphene properties(Trans Tech Publications, Switzerland, 2013) Ul Hassan J.; Meyer, A.; Çakmakyapan, Semih; Kazar, Özgür; Flege J.I.; Falta J.; Özbay, Ekmel; Janzén, E.The evolution of SiC surface morphology during graphene growth process has been studied through the comparison of substrate surface step structure after in-situ etching and graphene growth in vacuum. Influence of in-situ substrate surface preparation on the properties of graphene was studied through the comparison of graphene layers on etched and un-etched substrates grown under same conditions. © (2013) Trans Tech Publications, Switzerland.Item Open Access Synthesis of graphene on ultra-smooth copper foils for large area flexible electronics(IEEE, 2015) Polat, E. O.; Balcı, Osman; Kakenov, Nurbek; Kocabaş, Coşkun; Dahiya, R.This work demonstrates the synthesis of high quality, single layer graphene on commercially available ultra-smooth copper foils. The presented method will result in improved scalability of graphene based electronic and optical devices. Our approach is compatible with roll-to-roll printing as well as transfer printing of graphene layers on to a broad range of substrates including flexible and ultra-thin polymers. We propose that using commercially available ultra-smooth coppers provides scalable approach with the reduced variation of transport properties sourced from local graphene quality.Item Open Access Weighing graphene with QCM to monitor interfacial mass changes(American Institute of Physics Inc., 2016) Kakenov, N.; Balci, O.; Salihoglu, O.; Hur, S. H.; Balci, S.; Kocabas, C.In this Letter, we experimentally determined the mass density of graphene using quartz crystal microbalance (QCM) as a mechanical resonator. We developed a transfer printing technique to integrate large area single-layer graphene on QCM. By monitoring the resonant frequency of an oscillating quartz crystal loaded with graphene, we were able to measure the mass density of graphene as ∼118 ng/cm2, which is significantly larger than the ideal graphene (∼76 ng/cm2) mainly due to the presence of wrinkles and organic/inorganic residues on graphene sheets. High sensitivity of the quartz crystal resonator allowed us to determine the number of graphene layers in a particular sample. Additionally, we extended our technique to probe interfacial mass variation during adsorption of biomolecules on graphene surface and plasma-assisted oxidation of graphene.