Browsing by Subject "Glass fibers"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Mechanical and chemical properties of nanoparticle-coated E-glass fibers for composites applications(2023-07) Ahmed, Md KawsarGlass fibers are the most extensively employed reinforcement materials in the fiber-reinforced composites field owing to their superior mechanical properties with cost-effectiveness. The mechanical and chemical properties of the composites are greatly dependent upon the reinforcement materials. In order to enhance the performance of composites, it is necessary to improve the mechanical property of the reinforcement materials, i.e., glass fibers. In this thesis, the mechanical and chemical properties of E-glass fibers were investigated via the incorporation of metal oxide nanoparticles. As part of this process, E-glass fibers were dip-coated with nanoparticle solutions using titania (TiO2), silica (SiO2), and zirconia (ZrO2) nanoparticles. Microscopic and spectroscopic analysis proved the presence of nanoparticles on the surface of the fibers. Tensile tests were conducted on bare and nanoparticle-coated fibers to see the effect of coating and the concentration of nanoparticles over the fiber’s surface. Weibull statistical analysis was carried out on bare and coated fibers to see the effect of stress on the probability of failures of the E-glass fibers. A fractographic study was also carried out on E-glass fibers to see the effect of tensile strength on the mirror region of the fracture surface. Additionally, chemical analysis was also carried out to see the resistivity of the fibers in a highly alkaline environment. The results suggest that glass fibers coated with TiO2 nanoparticles improved the tensile strength of fibers up to 11.7% by providing a lower probability of failure. On the other hand, coating with SiO2 nanoparticles had a slightly negative impact on the strength of fibers due to the lower quality of coating, leading to a decrease in the tensile strength and an increase in the probability of failure. Moreover, ZrO2 nanoparticles were found effective in providing resistance against the corrosion to the glass fibers in an alkaline environment for up to 4 days of dwelling. Nanoparticle-coated E-glass fibers are expected to improve the mechanical and chemical properties of glass fiber-reinforced composites for various industrial applications in the future.Item Open Access Metal oxide nanoparticle coatings for enhanced mechanical and chemical properties of glass fibers(2024-01) Kurucu, ArdaGlass fibers are one of the most used reinforcement fibers in composites. They have highly demanded properties such as good mechanical properties, impact resistance, high strength-to-weight ratio, and cost-efficiency. Glass fiber composites are utilized in many fields such as aerospace, automotive, and maritime. Glass fibers are one of the components in the composite structure aside from the resin matrix and their properties heavily affect the overall properties of the composite material. By improving the properties of glass fiber reinforcement, composite performance can also be improved. Industrial-scale fabrication of glass fiber re-quires the construction of a certain glass-type exclusive factory. This study aims to have an alternative solution to meet the strength demands of industry with a relatively simple modification to the production process of E-glass fibers. In this study, the mechanical, chemical, and dielectric properties of glass fibers are altered via metal oxide nanoparticle coating. A thin layer of ZnO coating is applied onto the E-glass fibers via the dip coating method. Through spectroscopic and SEM characterization, the presence of ZnO coating is confirmed, and the effect of this coating on mechanical properties is investigated through micromechanical analysis. ZnO coating proved to increase the tensile strength of E-glass fibers by 14.67%. In addition to mechanical improvements, the ZnO nanoparticles proved to be effective in corrosion resistance. Their corrosion-resistant properties are investigated using an acidic environment. Coated fibers are then used to manufacture a glass fiber felt composite to investigate the effect of nanoparticles on signal transmittance properties of glass fiber composites. In addition to the modification of common E-glass fibers, a novel pure silica fiber fabrication method for advanced aerospace composite applications is developed. Principles of optical fiber production are utilized to fabricate structural high-purity fiber with unconventional fuel gas heating sources. This study aims to obtain know-how and knowledge on the production of pure silica fiber. To fabricate the pure silica fiber, a novel custom fabrication setup is designed and manufactured. This setup includes a custom heating system, a custom capstan tractor, and a custom feeding system.