Metal oxide nanoparticle coatings for enhanced mechanical and chemical properties of glass fibers
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Glass fibers are one of the most used reinforcement fibers in composites. They have highly demanded properties such as good mechanical properties, impact resistance, high strength-to-weight ratio, and cost-efficiency. Glass fiber composites are utilized in many fields such as aerospace, automotive, and maritime. Glass fibers are one of the components in the composite structure aside from the resin matrix and their properties heavily affect the overall properties of the composite material. By improving the properties of glass fiber reinforcement, composite performance can also be improved. Industrial-scale fabrication of glass fiber re-quires the construction of a certain glass-type exclusive factory. This study aims to have an alternative solution to meet the strength demands of industry with a relatively simple modification to the production process of E-glass fibers. In this study, the mechanical, chemical, and dielectric properties of glass fibers are altered via metal oxide nanoparticle coating. A thin layer of ZnO coating is applied onto the E-glass fibers via the dip coating method. Through spectroscopic and SEM characterization, the presence of ZnO coating is confirmed, and the effect of this coating on mechanical properties is investigated through micromechanical analysis. ZnO coating proved to increase the tensile strength of E-glass fibers by 14.67%. In addition to mechanical improvements, the ZnO nanoparticles proved to be effective in corrosion resistance. Their corrosion-resistant properties are investigated using an acidic environment. Coated fibers are then used to manufacture a glass fiber felt composite to investigate the effect of nanoparticles on signal transmittance properties of glass fiber composites. In addition to the modification of common E-glass fibers, a novel pure silica fiber fabrication method for advanced aerospace composite applications is developed. Principles of optical fiber production are utilized to fabricate structural high-purity fiber with unconventional fuel gas heating sources. This study aims to obtain know-how and knowledge on the production of pure silica fiber. To fabricate the pure silica fiber, a novel custom fabrication setup is designed and manufactured. This setup includes a custom heating system, a custom capstan tractor, and a custom feeding system.