Browsing by Subject "Gene expression profiling"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Open Access Characterization of a novel zebrafish (Danio rerio) gene, wdr81, associated with cerebellar ataxia, mental retardation and dysequilibrium syndrome (CAMRQ)(BioMed Central Ltd., 2015) Doldur-Balli, F.; Ozel, M. N.; Gulsuner, S.; Tekinay, A. B.; Ozcelik, T.; Konu, O.; Adams, M. M.Background: WDR81 (WD repeat-containing protein 81) is associated with cerebellar ataxia, mental retardation and disequilibrium syndrome (CAMRQ2, [MIM 610185]). Human and mouse studies suggest that it might be a gene of importance during neurodevelopment. This study aimed at fully characterizing the structure of the wdr81 transcript, detecting the possible transcript variants and revealing its expression profile in zebrafish, a powerful model organism for studying development and disease. Results: As expected in human and mouse orthologous proteins, zebrafish wdr81 is predicted to possess a BEACH (Beige and Chediak-Higashi) domain, a major facilitator superfamily domain and WD40-repeats, which indicates a conserved function in these species. We observed that zebrafish wdr81 encodes one open reading frame while the transcript has one 5' untranslated region (UTR) and the prediction of the 3' UTR was mainly confirmed along with a detected insertion site in the embryo and adult brain. This insertion site was also found in testis, heart, liver, eye, tail and muscle, however, there was no amplicon in kidney, intestine and gills, which might be the result of possible alternative polyadenylation processes among tissues. The 5 and 18 hpf were critical timepoints of development regarding wdr81 expression. Furthermore, the signal of the RNA probe was stronger in the eye and brain at 18 and 48 hpf, then decreased at 72 hpf. Finally, expression of wdr81 was detected in the adult brain and eye tissues, including but not restricted to photoreceptors of the retina, presumptive Purkinje cells and some neurogenic brains regions. Conclusions: Taken together these data emphasize the importance of this gene during neurodevelopment and a possible role for neuronal proliferation. Our data provide a basis for further studies to fully understand the function of wdr81.Item Open Access Chondrogenic differentiation of mesenchymal stem cells on glycosaminoglycan-mimetic peptide nanofibers(American Chemical Society, 2016) Yaylaci, S .U.; Sen, M.; Bulut, O.; Arslan, E.; Güler, Mustafa O.; Tekinay, A. B.Glycosaminoglycans (GAGs) are important extracellular matrix components of cartilage tissue and provide biological signals to stem cells and chondrocytes for development and functional regeneration of cartilage. Among their many functions, particularly sulfated glycosaminoglycans bind to growth factors and enhance their functionality through enabling growth factor-receptor interactions. Growth factor binding ability of the native sulfated glycosaminoglycans can be incorporated into the synthetic scaffold matrix through functionalization with specific chemical moieties. In this study, we used peptide amphiphile nanofibers functionalized with the chemical groups of native glycosaminoglycan molecules such as sulfonate, carboxylate and hydroxyl to induce the chondrogenic differentiation of rat mesenchymal stem cells (MSCs). The MSCs cultured on GAG-mimetic peptide nanofibers formed cartilage-like nodules and deposited cartilage-specific matrix components by day 7, suggesting that the GAG-mimetic peptide nanofibers effectively facilitated their commitment into the chondrogenic lineage. Interestingly, the chondrogenic differentiation degree was manipulated with the sulfonation degree of the nanofiber system. The GAG-mimetic peptide nanofibers network presented here serve as a tailorable bioactive and bioinductive platform for stem-cell-based cartilage regeneration studies.Item Open Access Differential expression patterns of metastasis suppressor proteins in basal cell carcinoma(Wiley-Blackwell Publishing Ltd., 2015) Bozdogan, O.; Yulug, I. G.; Vargel, I.; Cavusoglu, T.; Karabulut, A. A.; Karahan, G.; Sayar, N.Background: Basal cell carcinomas (BCCs) are common malignant skin tumors. Despite having a significant invasion capacity, they metastasize only rarely. Our aim in this study was to detect the expression patterns of the NM23-H1, NDRG1, E-cadherin, RHOGDI2, CD82/KAI1, MKK4, and AKAP12 metastasis suppressor proteins in BCCs. Methods: A total of 96 BCC and 10 normal skin samples were included for the immunohistochemical study. Eleven frozen BCC samples were also studied by quantitative real time polymerase chain reaction (qRT-PCR) to detect the gene expression profile. Results: NM23-H1 was strongly and diffusely expressed in all types of BCC. Significant cytoplasmic expression of NDRG1 and E-cadherin was also detected. However, AKAP12 and CD82/KAI1 expression was significantly decreased. The expressions of the other proteins were somewhere between the two extremes. Similarly, qRT-PCR analysis showed down-regulation of AKAP12 and up-regulation of NM23-H1 and NDRG1 in BCC. Morphologically aggressive BCCs showed significantly higher cytoplasmic NDRG1 expression scores and lower CD82/KAI1 scores than non-aggressive BCCs. Conclusion: The relatively preserved levels of NM23-H1, NDRG1, and E-cadherin proteins may have a positive effect on the non-metastasizing features of these tumors.Item Open Access Discovering modulators of gene expression(Oxford University Press, 2010-09-01) Babur, Özgün; Demir, Emek; Gönen, M.; Sander, C.; Doğrusöz, UğurProteins that modulate the activity of transcription factors, often called modulators, play a critical role in creating tissue- and context-specific gene expression responses to the signals cells receive. GEM (Gene Expression Modulation) is a probabilistic framework that predicts modulators, their affected targets and mode of action by combining gene expression profiles, protein-protein interactions and transcription factor-target relationships. Using GEM, we correctly predicted a significant number of androgen receptor modulators and observed that most modulators can both act as co-activators and co-repressors for different target genes. © The Author(s) 2010. Published by Oxford University Press.Item Open Access Distinct regulation of tonsillar immune response in virus infection(Wiley-Blackwell Publishing Ltd., 2014) Jartti, T.; Palomares, O.; Waris, M.; Tastan, O.; Nieminen, R.; Puhakka, T.; Rückert, B.; Aab, A.; Vuorinen, T.; Allander, T.; Vahlberg, T.; Ruuskanen, O.; Akdis, M.; Akdis, C. A.Background: The relationships between tonsillar immune responses, and viral infection and allergy are incompletely known. Objective To study intratonsillar/nasopharyngeal virus detections and in vivo expressions of T-cell- and innate immune response-specific cytokines, transcription factors, and type I/II/III interferons in human tonsils. Methods: Palatine tonsil samples were obtained from 143 elective tonsillectomy patients. Adenovirus, bocavirus-1, coronavirus, enteroviruses, influenza virus, metapneumovirus, parainfluenza virus, rhinovirus, and respiratory syncytial virus were detected using PCR. The mRNA expression levels of IFN-α, IFN-β, IFN-γ, IL-10, IL-13, IL-17, IL-28, IL-29, IL-37, TGF-β, FOXP3, GATA3, RORC2, and Tbet were directly analyzed by quantitative RT-PCR. Results Fifty percentage of subjects reported allergy, 59% had ≥1 nasopharyngeal viruses, and 24% had ≥1 intratonsillar viruses. Tonsillar virus detection showed a strong negative association with age; especially rhinovirus or parainfluenza virus detection showed positive association with IFN-γ and Tbet expressions. IL-37 expression was positively associated with atopic dermatitis, whereas IFN-α, IL-13, IL-28, and Tbet expressions were negatively associated with allergic diseases. Network analyses demonstrated strongly polarized clusters of immune regulatory (IL-10, IL-17, TGF-β, FOXP3, GATA3, RORC2, Tbet) and antiviral (IFN-α, IFN-β, IL-28, IL-29) genes. These two clusters became more distinctive in the presence of viral infection or allergy. A negative correlation between antiviral cytokines and IL-10, IL-17, IL-37, FOXP3, and RORC2 was observed only in the presence of viruses, and interestingly, IL-13 strongly correlated with antiviral cytokines. Conclusions: Tonsillar cytokine expression is closely related to existing viral infections, age, and allergic illnesses and shows distinct clusters between antiviral and immune regulatory genes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.Item Open Access Evaluation of an aldo-keto reductase gene signature with prognostic significance in colon cancer via activation of epithelial to mesenchymal transition and the p70S6K pathway(Oxford University Press, 2020-07) Demirkol Canlı, S.; Seza, E. G.; Sheraj, I.; Gömçeli, İ.; Turhan, N.; Carberry, S.; Prehn, J. H. M.; Güre, Ali Osmay; Banerjee, S.AKR1B1 and AKR1B10, members of the aldo-keto reductase family of enzymes that participate in the polyol pathway of aldehyde metabolism, are aberrantly expressed in colon cancer. We previously showed that high expression of AKR1B1 (AKR1B1HIGH) was associated with enhanced motility, inflammation and poor clinical outcome in colon cancer patients. Using publicly available datasets and ex vivo gene expression analysis (n = 51, Ankara cohort), we have validated our previous in silico finding that AKR1B1HIGH was associated with worse overall survival (OS) compared with patients with low expression of AKR1B1 (AKR1B1LOW) samples. A combined signature of AKR1B1HIGH and AKR1B10LOW was significantly associated with worse recurrence-free survival (RFS) in microsatellite stable (MSS) patients and in patients with distal colon tumors as well as a higher mesenchymal signature when compared with AKR1B1LOW/AKR1B10HIGH tumors. When the patients were stratified according to consensus molecular subtypes (CMS), AKR1B1HIGH/AKR1B10LOW samples were primarily classified as CMS4 with predominantly mesenchymal characteristics while AKR1B1LOW/AKR1B10HIGH samples were primarily classified as CMS3 which is associated with metabolic deregulation. Reverse Phase Protein Array carried out using protein samples from the Ankara cohort indicated that AKR1B1HIGH/AKR1B10LOW tumors showed aberrant activation of metabolic pathways. Western blot analysis of AKR1B1HIGH/AKR1B10LOW colon cancer cell lines also suggested aberrant activation of nutrient-sensing pathways. Collectively, our data suggest that the AKR1B1HIGH/AKR1B10LOW signature may be predictive of poor prognosis, aberrant activation of metabolic pathways, and can be considered as a novel biomarker for colon cancer prognostication.Item Open Access Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal(American Association for the Advancement of Science (A A A S), 2013) Gao J.; Aksoy, B. A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S. O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sander, C.; Schultz, N.The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics. © 2013 American Association for the Advancement of Science.Item Open Access Phenotype-based variation as a biomarker of sensitivity to molecularly targeted therapy in melanoma(Royal Society of Chemistry, 2017) Senses, K. M.; Ghasemi M.; Akbar, M. W.; Isbilen, M.; Fallacara, A. L.; Frankenburg, S.; Schenone, S.; Lotem, M.; Botta, M.; Gure, A. O.Transcriptomic phenotypes defined for melanoma have been reported to correlate with sensitivity to various drugs. In this study, we aimed to define a minimal signature that could be used to distinguish melanoma sub-types in vitro, and to determine suitable drugs by which these sub-types can be targeted. By using primary melanoma cell lines, as well as commercially available melanoma cell lines, we find that the evaluation of MLANA and INHBA expression is as capable as one based on a combined analysis performed with genes for stemness, EMT and invasion/proliferation, in identifying melanoma subtypes that differ in their sensitivity to molecularly targeted drugs. Using this approach, we find that 75% of melanoma cell lines can be treated with either the MEK inhibitor AZD6244 or the HSP90 inhibitor 17AAG.Item Open Access Quantification of SLIT-ROBO transcripts in hepatocellular carcinoma reveals two groups of genes with coordinate expression(BioMed Central, 2008) Avci, M. E.; Konu, O.; Yagci, T.Background: SLIT-ROBO families of proteins mediate axon pathfinding and their expression is not solely confined to nervous system. Aberrant expression of SLIT-ROBO genes was repeatedly shown in a wide variety of cancers, yet data about their collective behavior in hepatocellular carcinoma (HCC) is missing. Hence, we quantified SLIT-ROBO transcripts in HCC cell lines, and in normal and tumor tissues from liver. Methods: Expression of SLIT-ROBO family members was quantified by real-time qRT-PCR in 14 HCC cell lines, 8 normal and 35 tumor tissues from the liver. ANOVA and Pearson's correlation analyses were performed in R environment, and different clinicopathological subgroups were pairwise compared in Minitab. Gene expression matrices of cell lines and tissues were analyzed by Mantel's association test. Results: Genewise hierarchical clustering revealed two subgroups with coordinate expression pattern in both the HCC cell lines and tissues: ROBO1, ROBO2, SLIT1 in one cluster, and ROBO4, SLIT2, SLIT3 in the other, respectively. Moreover, SLIT-ROBO expression predicted AFP-dependent subgrouping of HCC cell lines, but not that of liver tissues. ROBO1 and ROBO2 were significantly up-regulated, whereas SLIT3 was significantly down-regulated in cell lines with high-AFP background. When compared to normal liver tissue, ROBO1 was found to be significantly overexpressed, while ROBO4 was down-regulated in HCC. We also observed that ROBO1 and SLIT2 differentiated histopathological subgroups of liver tissues depending on both tumor staging and differentiation status. However, ROBO4 could discriminate poorly differentiated HCC from other subgroups. Conclusion: The present study is the first in comprehensive and quantitative evaluation of SLIT-ROBO family gene expression in HCC, and suggests that the expression of SLIT-ROBO genes is regulated in hepatocarcinogenesis. Our results implicate that SLIT-ROBO transcription profile is bi-modular in nature, and that each module shows intrinsic variability. We also provide quantitative evidence for potential use of ROBO1, ROBO4 and SLIT2 for prediction of tumor stage and differentiation status.Item Open Access A resampling-based meta-analysis for detection of differential gene expression in breast cancer(BioMed Central, 2008) Gur-Dedeoglu, B.; Konu, O.; Kir, S.; Ozturk, A. R.; Bozkurt, B.; Ergul, G.; Yulug, I.G.Background: Accuracy in the diagnosis of breast cancer and classification of cancer subtypes has improved over the years with the development of well-established immunohistopathological criteria. More recently, diagnostic gene-sets at the mRNA expression level have been tested as better predictors of disease state. However, breast cancer is heterogeneous in nature; thus extraction of differentially expressed gene-sets that stably distinguish normal tissue from various pathologies poses challenges. Meta-analysis of high-throughput expression data using a collection of statistical methodologies leads to the identification of robust tumor gene expression signatures. Methods: A resampling-based meta-analysis strategy, which involves the use of resampling and application of distribution statistics in combination to assess the degree of significance in differential expression between sample classes, was developed. Two independent microarray datasets that contain normal breast, invasive ductal carcinoma (IDC), and invasive lobular carcinoma (ILC) samples were used for the meta-analysis. Expression of the genes, selected from the gene list for classification of normal breast samples and breast tumors encompassing both the ILC and IDC subtypes were tested on 10 independent primary IDC samples and matched non-tumor controls by real-time qRT-PCR. Other existing breast cancer microarray datasets were used in support of the resampling-based meta-analysis. Results: The two independent microarray studies were found to be comparable, although differing in their experimental methodologies (Pearson correlation coefficient, R = 0.9389 and R = 0.8465 for ductal and lobular samples, respectively). The resampling-based meta-analysis has led to the identification of a highly stable set of genes for classification of normal breast samples and breast tumors encompassing both the ILC and IDC subtypes. The expression results of the selected genes obtained through real-time qRT-PCR supported the meta-analysis results. Conclusion: The proposed meta-analysis approach has the ability to detect a set of differentially expressed genes with the least amount of within-group variability, thus providing highly stable gene lists for class prediction. Increased statistical power and stringent filtering criteria used in the present study also make identification of novel candidate genes possible and may provide further insight to improve our understanding of breast cancer development.Item Open Access Strain-and region-specific gene expression profiles in mouse brain in response to chronic nicotine treatment(Wiley-Blackwell Publishing, 2008) Wang, J.; Gutala, R.; Hwang, Y. Y.; Kim J. -M.; Konu, O.; Ma, J. Z.; Li, M. D.A pathway-focused complementary DNA microarray and gene ontology analysis were used to investigate gene expression profiles in the amygdala, hippocampus, nucleus accumbens, prefrontal cortex (PFC) and ventral tegmental area of C3H/HeJ and C57BL/6J mice receiving nicotine in drinking water (100 μg/ml in 2% saccharin for 2 weeks). A balanced experimental design and rigorous statistical analysis have led to the identification of 3.5-22.1% and 4.1-14.3% of the 638 sequence-verified genes as significantly modulated in the aforementioned brain regions of the C3H/HeJ and C57BL/6J strains, respectively. Comparisons of differential expression among brain tissues showed that only a small number of genes were altered in multiple brain regions, suggesting presence of a brain region-specific transcriptional response to nicotine. Subsequent principal component analysis and Expression Analysis Systematic Explorer analysis showed significant enrichment of biological processes both in C3H/HeJ and C57BL/6J mice, i.e. cell cycle/proliferation, organogenesis and transmission of nerve impulse. Finally, we verified the observed changes in expression using real-time reverse transcriptase polymerase chain reaction for six representative genes in the PFC region, providing an independent replication of our microarray results. Together, this report represents the first comprehensive gene expression profiling investigation of the changes caused by nicotine in brain tissues of the two mouse strains known to exhibit differential behavioral and physiological responses to nicotine.