Browsing by Subject "Ge quantum dot"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Light harvesting with Ge quantum dots embedded in SiO2 or Si3N4(A I P Publishing LLC, 2014) Cosentino, S.; Ozen, E. S.; Raciti, R.; Mio, A. M.; Nicotra, G.; Simone, F.; Crupi, I.; Turan, R.; Terrasi, A.; Aydınlı, Atilla; Mirabella, S.Germanium quantum dots (QDs) embedded in SiO2or in Si3N4have been studied for light harvesting purposes. SiGeO or SiGeN thin films, produced by plasma enhanced chemical vapor deposition, have been annealed up to 850°C to induce Ge QD precipitation in Si based matrices. By varying the Ge content, the QD diameter can be tuned in the 3-9 nm range in the SiO2matrix, or in the 1-2 nm range in the Si3N4matrix, as measured by transmission electron microscopy. Thus, Si3N4matrix hosts Ge QDs at higher density and more closely spaced than SiO2matrix. Raman spectroscopy revealed a higher threshold for amorphous-to-crystalline transition for Ge QDs embedded in Si3N4matrix in comparison with those in the SiO2host. Light absorption by Ge QDs is shown to be more effective in Si3N4matrix, due to the optical bandgap (0.9-1.6 eV) being lower than in SiO2matrix (1.2-2.2 eV). Significant photoresponse with a large measured internal quantum efficiency has been observed for Ge QDs in Si3N4matrix when they are used as a sensitive layer in a photodetector device. These data will be presented and discussed, opening new routes for application of Ge QDs in light harvesting devices. © 2014 AIP Publishing LLC.Item Open Access Synthesis of ultra-small Si / Ge semiconductor nano-particles using electrochemistry(Elsevier, 2012) Alkis, S.; Ghaffari, M.; Okyay, Ali KemalIn this paper, we describe the formation of colloidal Si/Ge semiconductor nano-particles by electrochemical etching of Ge quantum dots (GEDOT), Silicon-Germanium graded layers (GRADE) and Silicon-Germanium multi-quantum well (MQW) structures which are prepared on Silicon wafers using low pressure chemical vapor deposition (LPCVD) technique. The formation of Si/Ge nano-particles is verified by transmission electron microscope (TEM) images and photoluminescence (PL) measurements. The Si/Ge nano-particles obtained from GEDOT and GRADE structures, gave blue emissions, upon 250 nm, and 300 nm UV excitations. However, the nano-particles obtained from the MQW structure did exhibit various color emissions (orange, blue, green and red) upon excitation with 250 nm, 360 nm, 380 nm and 400 nm wavelength light.