Browsing by Subject "Gaussianity tests"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access 2-D adaptive prediction based Gaussianity tests in microcalcification detection(SPIE, 1998-01) Gürcan, M. Nafi; Yardımcı, Yasemin; Çetin, A. EnisWith increasing use of Picture Archiving and Communication Systems (PACS), Computer-aided Diagnosis (CAD) methods will be more widely utilized. In this paper, we develop a CAD method for the detection of microcalcification clusters in mammograms, which are an early sign of breast cancer. The method we propose makes use of two-dimensional (2-D) adaptive filtering and a Gaussianity test recently developed by Ojeda et al. for causal invertible time series. The first step of this test is adaptive linear prediction. It is assumed that the prediction error sequence has a Gaussian distribution as the mammogram images do not contain sharp edges. Since microcalcifications appear as isolated bright spots, the prediction error sequence contains large outliers around microcalcification locations. The second step of the algorithm is the computation of a test statistic from the prediction error values to determine whether the samples are from a Gaussian distribution. The Gaussianity test is applied over small, overlapping square regions. The regions, in which the Gaussianity test fails, are marked as suspicious regions. Experimental results obtained from a mammogram database are presented.Item Open Access Computer aided diagnosis in radiology(1999) Gürcan, Metin NafiBreast cancer is one of the most deadly diseases for middle-aged women. In this thesis, computer-aided diagnosis tools are developed for the detection of breast cancer on mammograms. These tools include a detection scheme for microcalcification clusters which are an early sign of breast cancer, and a method to detect the boundaries of mass lesions. In the first microcalcification detection method we propose, a subband decomposition structure is employed. Contrary to the previous work, the detection is carried out in the subband domain. The mammogram image is first processed by a subband decomposition filter bank. The resulting subimage is analyzed to detect microcalcification clusters. In regions corresponding to the healthy breast tissue the distribution is almost Gaussian. Since microcalcifications are small, isolated bright spots, they produce outliers in the subimages and the distribution of pixels deviates from Gaussian. The subimages are divided into overlapping square regions. In each square region, skewness and kurtosis values are estimated. As third and fourth order correlation parameters, skewness and kurtosis, are measures of the asymmetry and impulsiveness of the distribution, they can be used to find the locations of microcalcification clusters. If the values of these parameters are higher than experimentally determined thresholds then the region is marked as a potential cancer area. Experimental studies indicate that this method successfully detects regions containing microcalcifications. We also propose another microcalcification detection method which uses two- dimensional (2-D) adaptive filtering and a higher order statistics based Gaussianity test. In this method, statistics of the prediction errors are computed to determine whether the samples are from a Gaussian distribution. The prediction error sequence deviates from Gaussianity around microcalcification locations because prediction of microcalcification pixels is more difficult than prediction of the pixels corresponding to healthy breast tissue. Then, we develop a new Gaussianity test which has higher sensitivity to outliers. The scheme which uses this test gives better detection performance compared to the previously proposed methods. Within the detected regions it is possible to segment individual microcalcifications. An outlier labeling and nonlinear subband decomposition based microcalcification segmentation method is also investigated. Two types of lesions, namely mass and stellate lesions, might be indicators of breast cancer. Finally, we propose a snake algorithm based scheme to detect the boundaries of mass lesions on mammograms. This scheme is compared with a recently developed region growing based boundary detection method. It is observed that the snake algorithm results in a more smooth boundary which is consistent with the morphological structure of mass lesions.Item Open Access Influence function based Gaussianity tests for detection of microcalcifications in mammogram images(IEEE, 1999-10) Gürcan, M. Nafi; Yardımcı, Y.; Çetin, A. EnisIn this paper, computer-aided diagnosis of microcalcifications in mammogram images is considered. Microcalcification clusters are an early sign of breast cancer. Microcalcifications appear as single bright spots in mammogram images. We propose an effective method for the detection of these abnormalities. The first step of this method is two-dimensional adaptive filtering. The filtering produces an error image which is divided into overlapping square regions. In each square region, a Gaussianity test is applied. Since microcalcifications have an impulsive appearance, they are treated as outliers. In regions with no microcalcifications, the distribution of the error image is almost Gaussian, on the other hand, in regions containing microcalcification clusters, the distribution deviates from Gaussianity. Using the theory of the influence function and sensitivity curves, we develop a Gaussianity test. Microcalcification clusters are detected using the Gaussianity test. Computer simulation studies are presented.