BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Functions, characteristic."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Analytic and asymptotic properties of non-symmetric Linnik's probability densities
    (1995) Erdoğan, M. Burak
    We prove that the function 1 , a 6 (0 ,2 ), ^ e R, 1 + is a characteristic function of a probability distribution if and only if ( a , 0 e P D = {{a,e) : a € (0,2), \d\ < m in (f^ , x - ^ ) (mod 27t)}. This distribution is absolutely continuous, its density is denoted by p^(x). For 0 = 0 (mod 2tt), it is symmetric and was introduced by Linnik (1953). Under another restrictions on 0 it was introduced by Laha (1960), Pillai (1990), Pakes (1992). In the work, it is proved that p^{±x) is completely monotonic on (0, oo) and is unimodal on R for any (a,0) € PD. Monotonicity properties of p^(x) with respect to 9 are studied. Expansions of p^(x) both into asymptotic series as X —»· ±oo and into conditionally convergent series in terms of log |x|, \x\^ (^ = 0 ,1 ,2 ,...) are obtained. The last series are absolutely convergent for almost all but not for all values of (a, 0) € PD. The corresponding subsets of P D are described in terms of Liouville numbers.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback