Analytic and asymptotic properties of non-symmetric Linnik's probability densities

Date

1995

Editor(s)

Advisor

Ostrovskii, Lossif V.

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
4
views
19
downloads

Series

Abstract

We prove that the function 1 , a 6 (0 ,2 ), ^ e R, 1 + is a characteristic function of a probability distribution if and only if ( a , 0 e P D = {{a,e) : a € (0,2), \d\ < m in (f^ , x - ^ ) (mod 27t)}. This distribution is absolutely continuous, its density is denoted by p^(x). For 0 = 0 (mod 2tt), it is symmetric and was introduced by Linnik (1953). Under another restrictions on 0 it was introduced by Laha (1960), Pillai (1990), Pakes (1992). In the work, it is proved that p^{±x) is completely monotonic on (0, oo) and is unimodal on R for any (a,0) € PD. Monotonicity properties of p^(x) with respect to 9 are studied. Expansions of p^(x) both into asymptotic series as X —»· ±oo and into conditionally convergent series in terms of log |x|, \x^ (^ = 0 ,1 ,2 ,...) are obtained. The last series are absolutely convergent for almost all but not for all values of (a, 0) € PD. The corresponding subsets of P D are described in terms of Liouville numbers.

Course

Other identifiers

Book Title

Degree Discipline

Mathematics

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)