Browsing by Subject "Frequency shift keying"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Circular high-Q resonating isotropic strain sensors with large shift of resonance frequency under stress(2009) Melik, R.; Unal, E.; Perkgoz, N.K.; Puttlitz, C.; Demir, Hilmi VolkanWe present circular architecture bioimplant strain sensors that facilitate a strong resonance frequency shift with mechanical deformation. The clinical application area of these sensors is for in vivo assessment of bone fractures. Using a rectangular geometry, we obtain a resonance shift of 330 MHz for a single device and 170 MHz for its triplet configuration (with three side-by-side resonators on chip) under an applied load of 3,920 N. Using the same device parameters with a circular isotropic architecture, we achieve a resonance frequency shift of 500 MHz for the single device and 260 MHz for its triplet configuration, demonstrating substantially increased sensitivity. © 2009 by the authors.Item Open Access Electrostatic force spectroscopy of near surface localized states(Institute of Physics Publishing Ltd., 2005) Dâna, A.; Yamamoto, Y.Electrostatic force microscopy at cryogenic temperatures is used to probe the electrostatic interaction of a conductive atomic force microscopy tip and electronic charges trapped in localized states in an insulating layer on a semiconductor. Measurement of the frequency shift of the cantilever as a function of tip-sample bias voltage shows discrete peaks at certain voltages when the tip is located near trap centres. These discrete changes in frequency are attributed to one by one filling of individual electronic states when the quantized energies traverse the substrate conduction band Fermi energy as the tip-sample voltage is increased. Theoretical analysis of the experiment suggests that such a measurement of the cantilever frequency shift as a function of bias voltage can be interpreted as an AC force measurement, from which spectroscopic information about the location and energy of localized states can be deduced. Experimental results from the study of a sample with InAs quantum dots as trap centres are presented.Item Open Access Metamaterial based telemetric strain sensing in different materials(Optical Society of American (OSA), 2010) Melik, R.; Unal, E.; Perkgoz, N.K.; Puttlitz, C.; Demir, Hilmi VolkanWe present telemetric sensing of surface strains on different industrial materials using split-ring-resonator based metamaterials. For wireless strain sensing, we utilize metamaterial array architectures for high sensitivity and low nonlinearity-errors in strain sensing. In this work, telemetric strain measurements in three test materials of cast polyamide, derlin and polyamide are performed by observing operating frequency shift under mechanical deformation and these data are compared with commercially-available wired strain gauges. We demonstrate that hard material (cast polyamide) showed low slope in frequency shift vs. applied load (corresponding to high Young's modulus), while soft material (polyamide) exhibited high slope (low Young's modulus).Item Open Access RF-MEMS load sensors with enhanced Q-factor and sensitivity in a suspended architecture(Elsevier, 2010-11-09) Melik, R.; Unal, E.; Perkgoz, N. K.; Puttlitz, C.; Demir, Hilmi VolkanIn this paper, we present and demonstrate RF-MEMS load sensors designed and fabricated in a suspended architecture that increases their quality-factor (Q-factor), accompanied with an increased resonance frequency shift under load. The suspended architecture is obtained by removing silicon under the sensor. We compare two sensors that consist of 195 μm × 195 μm resonators, where all of the resonator features are of equal dimensions, but one's substrate is partially removed (suspended architecture) and the other's is not (planar architecture). The single suspended device has a resonance of 15.18 GHz with 102.06 Q-factor whereas the single planar device has the resonance at 15.01 GHz and an associated Q-factor of 93.81. For the single planar device, we measured a resonance frequency shift of 430 MHz with 3920 N of applied load, while we achieved a 780 MHz frequency shift in the single suspended device. In the planar triplet configuration (with three devices placed side by side on the same chip, with the two outmost ones serving as the receiver and the transmitter), we observed a 220 MHz frequency shift with 3920 N of applied load while we obtained a 340 MHz frequency shift in the suspended triplet device with 3920 N load applied. Thus, the single planar device exhibited a sensitivity level of 0.1097 MHz/N while the single suspended device led to an improved sensitivity of 0.1990 MHz/N. Similarly, with the planar triplet device having a sensitivity of 0.0561 MHz/N, the suspended triplet device yielded an enhanced sensitivity of 0.0867 MHz/N.Item Open Access Simultaneous measurement of multiple independent atomic-scale interactions using scanning probe microscopy: data interpretation and the effect of cross-talk(American Chemical Society, 2015) Baykara, M. Z.; Todorović, M.; Mönig, H.; Schwendemann, T. C.; Rodrigo, L.; Altman, E. I.; Pérez, R.; Schwarz, U. D.In high-resolution scanning probe microscopy, it is becoming increasingly common to simultaneously record multiple channels representing different tip-sample interactions to collect complementary information about the sample surface. A popular choice involves simultaneous scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) measurements, which are thought to reflect the chemical and electronic properties of the sample surface. With surface-oxidized Cu(100) as an example, we investigate whether atomic-scale information on chemical interactions can be reliably extracted from frequency shift maps obtained while using the tunneling current as the feedback parameter. Ab initio calculations of interaction forces between specific tip apexes and the surface are utilized to compare experiments with theoretical expectations. The examination reveals that constant-current operation may induce a noticeable influence of topography-feedback-induced cross-talk on the frequency shift data, resulting in misleading interpretations of local chemical interactions on the surface. Consequently, the need to apply methods such as 3D-AFM is emphasized when accurate conclusions about both the local charge density near the Fermi level, as provided by the STM channel, and the site-specific strength of tip-sample interactions (NC-AFM channel) are desired. We conclude by generalizing to the case where multiple atomic-scale interactions are being probed while only one of them is kept constant.Item Open Access Time-delay estimation in dispersed spectrum cognitive radio systems(SpringerOpen, 2010) Kocak, F.; Celebi, H.; Gezici, Sinan; Qaraqe, K. A.; Arslan, H.; Poor, H. V.Time-delay estimation is studied for cognitive radio systems, which facilitate opportunistic use of spectral resources. A two-step approach is proposed to obtain accurate time-delay estimates of signals that occupy multiple dispersed bands simultaneously, with significantly lower computational complexity than the optimal maximum likelihood (ML) estimator. In the first step of the proposed approach, an ML estimator is used for each band of the signal in order to estimate the unknown parameters of the signal occupying that band. Then, in the second step, the estimates from the first step are combined in various ways in order to obtain the final time-delay estimate. The combining techniques that are used in the second step are called optimal combining, signal-to-noise ratio (SNR) combining, selection combining, and equal combining. It is shown that the performance of the optimal combining technique gets very close to the Cramer-Rao lower bound at high SNRs. These combining techniques provide various mechanisms for diversity combining for time-delay estimation and extend the concept of diversity in communications systems to the time-delay estimation problem in cognitive radio systems. Simulation results are presented to evaluate the performance of the proposed estimators and to verify the theoretical analysis.