Browsing by Subject "Feasibility study"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Evaluation of a consumer durable investment project: a feasibility study(1996) Çiftçi, TürkerInvestment projects have to be analyzed veiy carefully before they have been realized. Feasibility study is the most important part of this analysis process. The aim of this study is to propose a systematic project analysis framework and by using this framework to conduct a feasibility study in a real life investment project on consumer durable industry.Item Open Access In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction(Lippincott Williams & Wilkins, 2003) Kraitchman, D. L.; Heldman, A. W.; Atalar, Ergin; Amado, L. C.; Martin, B. J.; Pittenger, M. F.; Hare, J. M.; Bulte, J. W. M.Background - We investigated the potential of magnetic resonance imaging (MRI) to track magnetically labeled mesenchymal stem cells (MR-MSCs) in a swine myocardial infarction (MI) model. Methods and Results - Adult farm pigs (n=5) were subjected to closed-chest experimental MI. MR-MSCs (2.8 to 16×107 cells) were injected intramyocardially under x-ray fluoroscopy. MRIs were obtained on a 1.5T MR scanner to demonstrate the location of the MR-MSCs and were correlated with histology. Contrast-enhanced MRI demonstrated successful injection in the infarct and serial MSC tracking was demonstrated in two animals. Conclusion - MRI tracking of MSCs is feasible and represents a preferred method for studying the engraftment of MSCs in MI.Item Open Access Privacy-preserving genomic testing in the clinic: a model using HIV treatment(Nature Publishing Group, 2016) Mclaren, P. J.; Raisaro, J. L.; Aouri, M.; Rotger, M.; Ayday, E.; Bartha, I.; Delgado, M. B.; Vallet, Y.; Günthard, H. F.; Cavassini, M.; Furrer, H.; Doco-Lecompte, T.; Marzolini, C.; Schmid, P.; Di Benedetto, C.; Decosterd, L. A.; Fellay, J.; Hubaux, Jean-Pierre; Telenti A.Purpose:The implementation of genomic-based medicine is hindered by unresolved questions regarding data privacy and delivery of interpreted results to health-care practitioners. We used DNA-based prediction of HIV-related outcomes as a model to explore critical issues in clinical genomics.Methods:We genotyped 4,149 markers in HIV-positive individuals. Variants allowed for prediction of 17 traits relevant to HIV medical care, inference of patient ancestry, and imputation of human leukocyte antigen (HLA) types. Genetic data were processed under a privacy-preserving framework using homomorphic encryption, and clinical reports describing potentially actionable results were delivered to health-care providers.Results:A total of 230 patients were included in the study. We demonstrated the feasibility of encrypting a large number of genetic markers, inferring patient ancestry, computing monogenic and polygenic trait risks, and reporting results under privacy-preserving conditions. The average execution time of a multimarker test on encrypted data was 865 ms on a standard computer. The proportion of tests returning potentially actionable genetic results ranged from 0 to 54%.Conclusions:The model of implementation presented herein informs on strategies to deliver genomic test results for clinical care. Data encryption to ensure privacy helps to build patient trust, a key requirement on the road to genomic-based medicine.