Browsing by Subject "Fault tolerant computer systems"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Distributed interactive video system design and analysis(Institute of Electrical and Electronics Engineers, 1997) Wu, Tsong-Ho; Korpeoglu, I.; Cheng, Bo-ChaoThe interactive video (IV) market has been expected to capture a significant share of the huge potential revenues to be generated by the business and residential markets. The level of revenues generated depends on the completion rate of calls the service provider can support, no matter what the IV system or network condition. Thus, a cost-effective, scalable fault-tolerant IV system is needed to maximize the video call completion rate at an affordable cost. This article describes design methodologies for a scalable, fault-tolerant IV system and an IV system design and analysis research prototype called IVSDNA (IV System Designer and Analyzer). The IVSDNA prototype is designed to help network planners and engineers to evaluate quantitative trade-offs (in terms of network communications costs, video storage costs, and degree of system fault tolerance) between two major IV system architectures (centralized and distributed) with a variety of video distribution methods, replication strategies, and fault-tolerant access protocols.Item Open Access Fault-tolerant irregular topology design method for network-on-chips(IEEE, 2014) Tosun, S.; Ajabshir V.B.; Mercanoglu O.; Öztürk, ÖzcanAs the technology sizes of integrated circuits (ICs) scale down rapidly, current transistor densities on chips dramatically increase. While nanometer feature sizes allow denser chip designs in each technology generation, fabricated ICs become more susceptible to wear-outs, causing operation failure. Even a single link failure within an on-chip fabric can halt communication between application blocks, which makes the entire chip useless. In this study, we aim to make faulty chips designed with Network-on-Chip (NoC) communication usable. Specifically, we present a fault-tolerant irregular topology generation method for application specific NoC designs. Designed NoC topology allows a different routing path if there is a link failure on the default routing. We compare fault-tolerant topologies with regular fault-tolerant ring topologies, and non-fault-tolerant application specific irregular topologies on energy consumption, performance, and area using multimedia benchmarks and custom-generated graphs. © 2014 IEEE.Item Open Access Fault-tolerant topology generation method for application-specific network-on-chips(Institute of Electrical and Electronics Engineers, 2015) Tosun, S.; Ajabshir, V. B.; Mercanoglu, O.; Ozturk, O.As the technology sizes of integrated circuits (ICs) scale down rapidly, current transistor densities on chips dramatically increase. While nanometer feature sizes allow denser chip designs in each technology generation, fabricated ICs become more susceptible to wear-outs, causing operation failure. Even a single link failure within an on-chip fabric can halt communication between application blocks, which makes the entire chip useless. In this paper, we aim to make faulty chips designed with network-on-chip (NoC) communication usable. Specifically, we present fault-tolerant irregular topology-generation method for application-specific NoC designs. Designed NoC topology allows different routing path if there is a link failure on the default routing path. Additionally, we present a simulated annealing-based application mapping algorithm aiming to minimize total energy consumption of the NoC design. We compare fault-tolerant topologies with nonfault-tolerant application-specific irregular topologies on energy consumption, performance, and area using multimedia benchmarks and custom-generated graphs. Our results demonstrate that our method is able to determine fault-tolerant topologies with negligible area increase and better energy values.Item Open Access Reconfigurable hardened latch and flip-flop for FPGAs(IEEE, 2017-07) Ahangari, Hamzeh; Alouani, I.; Öztürk, Özcan; Niar, S.In this paper, we propose Joint Latch (JLatch) and Joint Flip-Flop (JFF), two novel reconfigurable structures which bring the reconfigurability of reliability to user latches and flip-flops (FFs) in reconfigurable devices such as FPGAs. Specifically, we implement two reconfigurable storage elements that exploit a trade-off between reliability and amount of available resources. In fault prone conditions, JLatch (or JFF) is configured in such a way that four pre-selected normal static latches (or FFs) are combined together at circuit level to form one hardened storage cell. Solution focuses on transient faults such as soft errors, where we show that critical charge is increased by at least three orders of magnitude (1000X) to practically bring immunity against any Single Event Upset (SEU). If four latches inside an FPGA logic block are far enough, it can effectively cope with Multiple Bit Upsets (MBUs) as well. Additionally, provided that special transistor sizing is applied (only necessary for some latch structures), JLatch and JFF take advantage of a novel self-correcting technique to correct any single fault immediately. Our solution provides reconfigurability of reliability with negligible performance and area overhead with only one (two) extra transistor(s) per latch (FF). The delay of this technique is less than the delay of conventional TMR (Triple Modular Redundancy) technique with a majority voter at output. © 2017 IEEE.