Browsing by Subject "Extracellular Matrix"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Biomimetic self-assembled peptide nanofibers for bone regeneration(2012) Kocabey, SametSelf-assembled peptide nanofibers are exploited in regenerative medicine applications due to their versatile, biofunctional and extracellular-matrixresembling structures. These properties provide peptide nanofibers with osteoinductive and osteoconductive behaviors for bone regeneration applications through several approaches. In this thesis, two different approaches were discussed, which were developed to induce bone regeneration and mineralization including extracellular matrix mimicking peptide nanofibers based 2-D gel formation and surface functionalization of titanium implants. For this purpose, we designed glycosaminoglycan-mimetic peptide nanofibers inspired by chemical structure of glycosaminoglycans present in the bone extracellular matrix. We demonstrated that glycosaminoglycan-mimetic peptide nanofibers interact with BMP-2, a critical growth factor for osteogenic activity. Glycosaminoglycan-mimicking ability of the peptide nanofibers and their interaction with BMP-2 promoted osteogenic activity of and mineralization by osteoblastic cells. ALP activity, Alizarin Red Staining and EDAX spectroscopy indicated efficacy of the peptide nanofibers for inducing mineralization. We also developed a hybrid osteoconductive system for titanium biomedical implants inspired by mussel adhesion mechanism in order to overcome bone tissue integration problems. For this purpose, Dopa conjugated peptide nanofiber coating was used along with bioactive peptide sequences for osteogenic activity to enhance osseointegration of titanium surface. Dopamediated immobilization of osteogenic peptide nanofibers on titanium surfaces created an osteoconductive interface between osteoblast-like cells and inhibited adhesion and viability of soft tissue forming fibroblasts compared to the uncoated titanium substrate. In summary, osteoinductive and osteoconductive self-assembled peptide nanofibers were developed to promote osteogenic activity and mineralization of osteogenic cells. These bioactive nanofibers provide a potent platform in clinical applications of bone tissue engineering.Item Open Access Effect of double growth factor release on cartilage tissue engineering(2013) Ertan, A.B.; Yilgor P.; Bayyurt, B.; Çalikoǧlu, A.C.; Kaspar Ç.; Kök F.N.; Kose G.T.; Hasirci V.The effects of double release of insulin-like growth factor I (IGF-I) and growth factor β1 (TGF-β1) from nanoparticles on the growth of bone marrow mesenchymal stem cells and their differentiation into cartilage cells were studied on PLGA scaffolds. The release was achieved by using nanoparticles of poly(lactic acid-co-glycolic acid) (PLGA) and poly(N-isopropylacrylamide) (PNIPAM) carrying IGF-I and TGF-β1, respectively. On tissue culture polystyrene (TCPS), TGF-β1 released from PNIPAM nanoparticles was found to have a significant effect on proliferation, while IGF-I encouraged differentiation, as shown by collagen type II deposition. The study was then conducted on macroporous (pore size 200-400μm) PLGA scaffolds. It was observed that the combination of IGF-I and TGF-β1 yielded better results in terms of collagen type II and aggrecan expression than GF-free and single GF-containing applications. It thus appears that gradual release of a combination of growth factors from nanoparticles could make a significant contribution to the quality of the engineered cartilage tissue. © 2011 John Wiley & Sons, Ltd.Item Open Access Small functional groups presented on peptide nanofibers for determining fate of rat mesenchymal stem cells(2014) Yaşa, ÖncayGlycosaminoglycans (GAGs) are negatively-charged, unbranched polysaccharides that play important roles in various biological processes and are vital for the regeneration of damaged tissues. Like other natural extracellular matrix components, glycosaminoglycans and proteoglycans show considerable variation in local concentration and chemical composition depending on tissue type. They are found in various connective tissues, including bone, cartilage and fat, and display strong water-binding capacity due to their negative charges. Mechanical characters of GAGs are heavily influenced by the degree and pattern of sulfation, which may greatly alter their viscoelasticity and physiological functions. Variations in GAG sulfation patterns are created principally through extracellular matrix modeling. Due to their extracellular matrix-organizing abilities, glycosaminoglycans are promising biomacromolecules for the design of new bioactive materials for tissue engineering and tissue reconstruction applications. In this study, we functionalized peptide amphiphile molecules with carboxylate and sulfonate groups to develop nanofibrous networks displaying a range of chemical patterns, and evaluated the effect of the chemical groups over the differentiation fate of rat mesenchymal stem cells. We demonstrate that higher sulfonate-to-glucose ratios are associated with adipogenesis, while higher carboxylate-to-glucose ratios resulted in chondrogenic and osteogenic differentiation of the rat mesenchymal stem cells.