Small functional groups presented on peptide nanofibers for determining fate of rat mesenchymal stem cells
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Series
Abstract
Glycosaminoglycans (GAGs) are negatively-charged, unbranched polysaccharides that play important roles in various biological processes and are vital for the regeneration of damaged tissues. Like other natural extracellular matrix components, glycosaminoglycans and proteoglycans show considerable variation in local concentration and chemical composition depending on tissue type. They are found in various connective tissues, including bone, cartilage and fat, and display strong water-binding capacity due to their negative charges. Mechanical characters of GAGs are heavily influenced by the degree and pattern of sulfation, which may greatly alter their viscoelasticity and physiological functions. Variations in GAG sulfation patterns are created principally through extracellular matrix modeling. Due to their extracellular matrix-organizing abilities, glycosaminoglycans are promising biomacromolecules for the design of new bioactive materials for tissue engineering and tissue reconstruction applications. In this study, we functionalized peptide amphiphile molecules with carboxylate and sulfonate groups to develop nanofibrous networks displaying a range of chemical patterns, and evaluated the effect of the chemical groups over the differentiation fate of rat mesenchymal stem cells. We demonstrate that higher sulfonate-to-glucose ratios are associated with adipogenesis, while higher carboxylate-to-glucose ratios resulted in chondrogenic and osteogenic differentiation of the rat mesenchymal stem cells.