Browsing by Subject "Example-based machine translation"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Learning translation templates from bilingual translation examples(Kluwer Academic Publishers, 2001-07) Cicekli, I.; Güvenir, H. A.A mechanism for learning lexical correspondences between two languages from sets of translated sentence pairs is presented. These lexical level correspondences are learned using analogical reasoning between two translation examples. Given two translation examples, the similar parts of the sentences in the source language must correspond to the similar parts of the sentences in the target language. Similarly, the different parts must correspond to the respective parts in the translated sentences. The correspondences between similarities and between differences are learned in the form of translation templates. A translation template is a generalized translation exemplar pair where some components are generalized by replacing them with variables in both sentences and establishing bindings between these variables. The learned translation templates are obtained by replacing differences or similarities by variables. This approach has been implemented and tested on a set of sample training datasets and produced promising results for further investigationItem Open Access A ranking method for example based machine translation results by learning from user feedback(Springer New York LLC, 2011-10) Daybelge, T.; Cicekli, I.Example-Based Machine Translation (EBMT) is a corpus based approach to Machine Translation (MT), that utilizes the translation by analogy concept. In our EBMT system, translation templates are extracted automatically from bilingual aligned corpora by substituting the similarities and differences in pairs of translation examples with variables. In the earlier versions of the discussed system, the translation results were solely ranked using confidence factors of the translation templates. In this study, we introduce an improved ranking mechanism that dynamically learns from user feedback. When a user, such as a professional human translator, submits his evaluation of the generated translation results, the system learns "context-dependent co-occurrence rules" from this feedback. The newly learned rules are later consulted, while ranking the results of the subsequent translations. Through successive translation-evaluation cycles, we expect that the output of the ranking mechanism complies better with user expectations, listing the more preferred results in higher ranks. We also present the evaluation of our ranking method which uses the precision values at top results and the BLEU metric. © 2010 Springer Science+Business Media, LLC.