BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Error rate performance"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Error rate analysis of cognitive radio transmissions with imperfect channel sensing
    (IEEE, 2013) Ozcan G.; Gursoy, M. C.; Gezici, Sinan
    In this paper, error rate performance of cognitive radio transmissions is studied in the presence of imperfect channel sensing decisions. It is assumed that cognitive users first perform channel sensing, albeit with possible errors. Then, depending on the sensing decisions, they select the transmission energy level and employ MI × MQ rectangular quadrature amplitude modulation (QAM) for data transmission over a fading channel. In this setting, the optimal decision rule is formulated under the assumptions that the receiver is equipped with the sensing decision and perfect knowledge of the channel fading. It is shown that the thresholds for optimal detection at the receiver are the midpoints between the signals under any sensing decision. Subsequently, minimum average error probability expressions for M-ary pulse amplitude modulation (M-PAM) and MI×MQ rectangular QAM transmissions attained with the optimal detector are derived. The effects of imperfect channel sensing decisions on the average symbol error probability are analyzed. Copyright © 2013 by the Institute of Electrical and Electronic Engineers, Inc.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Multi-resampling Doppler compensation in cooperative underwater OFDM systems
    (IEEE, 2013) Karakaya, B.; Hasna, M.O.; Duman, Tolga M.; Uysal, M.; Ghrayeb, A.
    We consider a multi-carrier cooperative underwater acoustic communication (UWAC) system and investigate the Doppler scaling problem arising due to the motion of different nodes. Specifically, we assume an orthogonal frequency division multiplexing (OFDM) system with amplify and forward (AF) relaying. Our channel model is built on large-scale path loss along with the short-term frequency-selective fading. For Doppler scaling compensation, we use multi-resampling (MR) receiver designs both at the relay and destination nodes. We present an extensive Monte Carlo simulation study to evaluate the error rate performance of the proposed UWAC system. In simulations, we use the publicly available VirTEX software in conjunction with the ray-tracing based BELLHOP software to precisely reflect the characteristics of an underwater geographical location and the movement of the nodes. © 2013 IEEE.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback