BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Epigraph of a cost function"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Deconvolution using projections onto the epigraph set of a convex cost function
    (IEEE, 2014) Tofighi, Mohammad; Bozkurt, Alican; Köse, K.; Çetin, A. Enis
    A new deconvolution algorithm based on making orthogonal projections onto the epigraph set of a convex cost function is presented. In this algorithm, the dimension of the minimization problem is lifted by one and sets corresponding to the cost function and observations are defined. If the utilized cost function is convex in RN, the corresponding epigraph set is also convex in RN+1. The deconvolution algorithm starts with an arbitrary initial estimate in RN+1. At each iteration cycle of the algorithm, first deconvolution projections are performed onto the hyperplanes representing observations, then an orthogonal projection is performed onto epigraph of the cost function. The method provides globally optimal solutions for total variation, l1, l2, and entropic cost functions.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Denoising using projections onto the epigraph set of convex cost functions
    (IEEE, 2014) Tofighi, Mohammad; Köse, K.; Çetin, A. Enis
    A new denoising algorithm based on orthogonal projections onto the epigraph set of a convex cost function is presented. In this algorithm, the dimension of the minimization problem is lifted by one and feasibility sets corresponding to the cost function using the epigraph concept are defined. As the utilized cost function is a convex function in RN, the corresponding epigraph set is also a convex set in RN+1. The denoising algorithm starts with an arbitrary initial estimate in RN+1. At each step of the iterative denoising, an orthogonal projection is performed onto one of the constraint sets associated with the cost function in a sequential manner. The method provides globally optimal solutions for total-variation, ℓ1, ℓ2, and entropic cost functions.1

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback