Denoising using projections onto the epigraph set of convex cost functions
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
A new denoising algorithm based on orthogonal projections onto the epigraph set of a convex cost function is presented. In this algorithm, the dimension of the minimization problem is lifted by one and feasibility sets corresponding to the cost function using the epigraph concept are defined. As the utilized cost function is a convex function in RN, the corresponding epigraph set is also a convex set in RN+1. The denoising algorithm starts with an arbitrary initial estimate in RN+1. At each step of the iterative denoising, an orthogonal projection is performed onto one of the constraint sets associated with the cost function in a sequential manner. The method provides globally optimal solutions for total-variation, ℓ1, ℓ2, and entropic cost functions.1