Browsing by Subject "Electrospinning process"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Biocatalytic protein membranes fabricated by electrospinning(Elsevier B.V., 2016) Kabay, G.; Kaleli, G.; Sultanova, Z.; Ölmez, T. T.; Şeker, U. Ö. Ş.; Mutlu, M.In this study, a protein-based catalytic membrane was produced by electrospinning. Membrane activity was characterised in terms of response current for various glucose concentrations. We focused on the preparation of a scaffold by converting a globular protein to other structural forms using catastrophic solvents. A scaffolding protein, bovine serum albumin, and an enzyme, glucose oxidase (GOD), were selected as a model natural carrier matrix and a biologically active agent, respectively. Beta-mercaptoethanol (β-ME) was used to convert the globular protein to an amyloid-like form. A structural stabilising agent, 2,2,2-triflouroethanol (TFE), was used to maintain the final α-helical structure of the amyloid-like protein. The TFE:PBS (phosphate-buffered saline) ratio and various electrospinning parameters were analysed to minimise activity loss. Using this approach, we applied electrospinning to an active enzyme to obtain biocatalytic nanofibrous membranes. After optimising the protein electrospinning process, the activities of the protein nanofibrous membranes were monitored. GOD remained active in the new membrane structure. The highest enzyme activity was observed for the membranes prepared with a 1.5:1 (v:v) TFE:PBS solvent ratio. In that particular case, the immobilized enzyme created a current of 0.7 μA and the apparent activity was 2547 ± 132 U/m2.Item Open Access Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon(Elsevier, 2017) Topuz, F.; Uyar, T.The electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon was shown, and the detailed studies were conducted to correlate the fiber morphology with electrospinning process parameters and gelatin concentration in electrospinning solution. Particularly, variations in the applied voltage and the concentration of gelatin led to the transition of fiber shape from round to flat/ribbon. The formation of flat-shaped fibers was attributed to rapid evaporation of the solvent (formic acid) from the fiber matrix with increasing the applied voltage and gelatin concentration. On the other hand, round fibers were due to the steady evaporation of formic acid throughout the cross-section of fibers. WAXS analysis revealed that the loss of triple-helical crystalline structure in gelatin after the electrospinning process. The gelatin fibers were cross-linked through treatment with toluene 2,4-diisocyanate (TDI) in a mixed solution of acetone and pyridine, and XPS confirmed the cross-linking of the fibers over an increased carbon content on the elemental composition of the fiber surface due to the incorporated TDI moieties. Overall, this study focuses on morphological tuning of gelatin electrospun fibers towards a flat/ribbon-like structure by variation of electrospinning parameters and polymer concentration, and thus, the proposed concept can be adapted towards flattened/ribbon-like fibers of other protein-based systems by electrospinning.Item Open Access Release and antibacterial activity of allyl isothiocyanate/β-cyclodextrin complex encapsulated in electrospun nanofibers(Elsevier, 2014) Aytac Z.; Dogan, S.Y.; Tekinay, T.; Uyar, TamerAllyl isothiocyanate (AITC) is known as an efficient antibacterial agent but it has a very high volatility. Herein, AITC and AITC/β-cyclodextrin (CD)-inclusion complex (IC) incorporated in polyvinyl alcohol (PVA) nanofibers were produced via electrospinning. SEM images elucidated that incorporation of AITC and AITC/β-CD-IC into polymer matrix did not affect the bead-free fiber morphology of PVA nanofibers. 1H-NMR and headspace GC-MS analyses revealed that very low amount of AITC was remained in PVA/AITC-NF because of the rapid evaporation of AITC during the electrospinning process. Nevertheless, much higher amount of AITC was preserved in the PVA/AITC/β-CD-IC-NF due to the CD inclusion complexation. The sustained release of AITC from nanofibers was evaluated at 30°C, 50°C and 75°C via headspace GC-MS. When compared to PVA/AITC-NF, PVA/AITC/β-CD-IC-NF has shown higher antibacterial activity against Escherichia coli and Staphylococcus aureus due to the presence of higher amount of AITC in this sample which was preserved by CD-IC. © 2014 Elsevier B.V.