BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Electronic structure and optical properties"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Low-threshold optical gain and lasing of colloidal nanoplatelets
    (IEEE, 2014-10) Keleştemur, Yusuf; Güzeltürk, Burak; Olutaş, Murat; Delikanlı, Savaş; Demir, Hilmi Volkan
    Semiconductor nanocrystals, which are also known as colloidal quantum dots (CQDs), are highly attractive materials for high performance optoelectronic device applications such as lasers. With their size, shape and composition tunable electronic structure and optical properties, CQDs are highly desired for achieving full-color, temperature-insensitive, low-threshold and solution-processed lasers [1, 2]. However, due to their small size, they suffer from the nonradiative multiexciton Auger Recombination (AR), where energy of a bound electron-hole pair is transferred to a third particle of either an electron or a hole instead of radiative recombination. Therefore, CQDs having suppressed AR are strongly required for achieving high quality CQD-based lasers. To address this issue, CQDs having different size, shape and electronic structure have been synthesized and studied extensively [3-5]. Generally, suppression of AR and lower optical gain thresholds are achieved via reducing the wavefunction overlap of the electron and hole in a CQD. However, the separation of the electron and hole wavefunctions will dramatically decrease the oscillator strength and optical gain coefficient, which is highly critical for achieving high performance lasers. Therefore, colloidal materials with suppressed AR and high gain coefficients are highly welcomed. Here, we study optical gain performance of colloidal quantum wells [6] of CdSe-core and CdSe/CdS core/crown nanoplatelets (NPLs) that demonstrate remarkable optical properties with ultra-low threshold one- and two-photon optical pumping. As a result of their giant oscillator strength, superior optical gain and lasing performance are achieved from these colloidal NPLs with greatly enhanced gain coefficient [7]. © 2014 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Optical and electronic properties of orthorhombic and trigonal AXO3 (A=Cd, Zn; X=Sn, Ge): first principle calculation
    (Taylor and Francis Inc., 2016) Ozisik, H.; Simsek S.; Deligoz, E.; Mamedov, A. M.; Özbay, Ekmel
    Electronic structure and optical properties of the CdXO3 and ZnXO3 (X˭Ge, Sn) compounds have been investigated based on density functional theory. According to the predictive results, reveal that the CdXO3 and ZnXO3 would be candidates for a high performance lead free optical crystal, which will avoid the environmental toxicity problem of the lead-based materials.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback