Browsing by Subject "Electrochemical deposition"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access CeOx/Al2O3 thin films on stainless steel substrate-dynamical X-ray photoelectron spectroscopy investigations(Elsevier, 2013) Avramova, I.; Süzer, Şefik; Guergova, D.; Stoychev, D.; Stefanov, P.The CeOx/Al2O3 thin films on stainless steel with different ceria loading were subjected to a.c. (square wave) pulses at various frequencies in the range 10- 3 to 100 kHz while recording X-ray photoelectron spectra. The resulting binding energy differences were derived from the frequency dependence of the corresponding Al2p, Ce3d and O1s peaks. At low ceria loadings the main constituent on the surface is CeAlO 3 phase, while for high ceria loading the film is constructed from CeO2 and CeAlO3 phases spread over the Al 2O3. Accordingly, it was observed that the ceria loading determines the conductivities of the investigated thin oxide films.Item Open Access Continuous mesoporous pd films by electrochemical deposition in nonionic micellar solution(American Chemical Society, 2017) Iqbal, M.; Li C.; Wood, K.; Jiang B.; Takei, T.; Dag, Ö.; Baba, D.; Nugraha, A. S.; Asahi, T.; Whitten, A. E.; Hossain, M. S. A.; Malgras, V.; Yamauchi, Y.Mesoporous metals that combine catalytic activity and high surface area can provide more opportunities for electrochemical applications. Various synthetic methods, including hard and soft templating, have been developed to prepare mesoporous/nanoporous metals. Micelle assembly, typically involved in soft-templates, is flexible and convenient for such purposes. It is, however, difficult to control, and the ordering is significantly destroyed during the metal deposition process, which is detrimental when it comes to designing precisely mesostructured materials. In the present work, mesoporous Pd films were uniformly electrodeposited using a nonionic surfactant, triblock copolymer poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide), as a pore-directing agent. The interaction between micelles and metal precursors greatly influences the metal growth and determines the final structure. The water-coordinated species interact with the ethylene oxide moiety of the micelles to effectively drive the Pd(II) species toward the working electrode surface. From small-angle neutron scattering data, it is found that spherical P123 micelles, with an average diameter of ∼14 nm, are formed in the electrolyte, and the addition of Pd ions does not significantly modify their structure, which is the essence of the micelle assembly approach. The uniformly sized mesopores are formed over the entire mesoporous Pd film and have an average pore diameter of 10.9 nm. Cross-sectional observation of the film also shows mesopores spanning continuously from the bottom to the top of the film. The crystallinity, crystal phase, and electronic coordination state of the Pd film are also confirmed. Through this study, it is found that the optimized surfactant concentration and applied deposition potential are the key factors to govern the formation of homogeneous and well-distributed pores over the entire film. Interestingly, the as-prepared mesoporous Pd films exhibit superior electrocatalytic activity toward the ethanol oxidation reaction by fully utilizing the accessible active surface area. Our approach combines electrochemistry with colloidal and coordination chemistry and is widely applicable to other promising metals and alloy electrocatalysts.Item Open Access Tunable plasmonic silver nanodomes for surface-enhanced raman scattering(Springer, 2018) Kahraman, M.; Ozbay, A.; Yuksel, H.; Solmaz, R.; Demir, B.; Caglayan, H.Surface-enhanced Raman scattering (SERS) is an emerging analytical method used in biological and non-biological structure characterization. Since the nanostructure plasmonic properties is a significant factor for SERS performance, nanostructure fabrication with tunable plasmonic properties are crucial in SERS studies. In this study, a novel method for fabrication of tunable plasmonic silver nanodomes (AgNDs) is presented. The convective-assembly method is preferred for the deposition of latex particles uniformly on a regular glass slide and used as a template for polydimethylsiloxane (PDMS) to prepare nanovoids on a PDMS surface. The obtained nanovoids on the PDMS are used as a mold for AgNDs fabrication. The nanovoids are filled with Ag deposition by the electrochemical method to obtain metallic AgNDs. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) are used for characterization of the structural properties of all fabricated AgNDs. The optical properties of AgNDs are characterized with the evaluation of SERS activity of 4-aminothiphonel and rhodamine 6G. In addition to experimental characterizations, the finite difference time domain (FDTD) method is used for the theoretical plasmonic properties calculation of the AgNDs. The experimental and theoretical results show that the SERS performance of AgNDs is strongly dependent on the heights and diameters of the AgNDs.