Browsing by Subject "Electrochemical analysis"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Electronic structure of Te-and As-covered Si(211)(American Physical Society, 2003) Sen, P.; Batra, I. P.; Sivananthan, S.; Grein, C. H.; Dhar, N.; Çıracı, SalimElectronic and atomic structures of the clean and As- and Te-covered Si(211) surface are studied using pseudopotential density-functional method. The clean surface is found to have (2 x 1) and rebonded (1 x 1) reconstructions as stable surface structures, but no π-bonded chain reconstruction. Binding energies of As and Te adatoms at a number of symmetry sites on the ideal and (2 x 1) reconstructed surfaces have been calculated because of their importance in the epitaxial growth of CdTe and other materials on the Si(211) surface. The special symmetry sites on these surfaces having the highest binding energies for isolated As and Te adatoms are identified. But more significantly, several sites are found to be nearly degenerate in binding-energy values. This has important consequences for epitaxial growth processes. Optimal structures calculated for 0.5 monolayer of As and Te coverage reveal that the As adatoms dimerize on the surface while the Te adatoms do not. However, both As- and Te-covered surfaces are found to be metallic in nature.Item Open Access One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers(Pergamon Press, 2014) Celebioglu A.; Aytac Z.; Umu, O. C. O.; Dana, A.; Tekinay, T.; Uyar, TamerOne-step synthesis of size-tunable silver nanoparticles (Ag-NP) incorporated into electrospun nanofibers was achieved. Initially, in situ reduction of silver salt (AgNO3) to Ag-NP was carried out in aqueous solution of polyvinyl alcohol (PVA). Here, PVA was used as reducing agent and stabilizing polymer as well as electrospinning polymeric matrix for the fabrication of PVA/Ag-NP nanofibers. Afterwards, hydroxypropyl-beta-cyclodextrin (HPβCD) was used as an additional reducing and stabilizing agent in order to control size and uniform dispersion of Ag-NP. The size of Ag-NP was ∼8 nm and some Ag-NP aggregates were observed for PVA/Ag-NP nanofibers, conversely, the size of Ag-NP decreased from ∼8 nm down to ∼2 nm within the fiber matrix without aggregation were attained for PVA/HPβCD nanofibers. The PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibers exhibited surface enhanced Raman scattering (SERS) effect. Moreover, antibacterial properties of PVA/Ag-NP and PVA/HPβCD/Ag-NP nanofibrous mats were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria.Item Open Access Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2(Springer Verlag, 2016-02) Senthamizhan A.; Balusamy, B.; Aytac Z.; Uyar, TamerWe report herein a flexible fluorescent nanofibrous membrane (FNFM) prepared by decorating the gold nanocluster (AuNC) on electrospun polysulfone nanofibrous membrane for rapid visual colorimetric detection of H2O2. The provision of AuNC coupled to NFM has proven to be advantageous for facile and quick visualization of the obtained results, permitting instant, selective, and on-site detection. We strongly suggest that the fast response time is ascribed to the enhanced probabilities of interaction with AuNC located at the surface of NF. It has been observed that the color change from red to blue is dependent on the concentration, which is exclusively selective for hydrogen peroxide. The detection limit has been found to be 500 nM using confocal laser scanning microscope (CLSM), visually recognizable with good accuracy and stability. A systematic comparison was performed between the sensing performance of FNFM and AuNC solution. The underlying sensing mechanism is demonstrated using UV spectra, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The corresponding disappearance of the characteristic emissions of gold nanoclusters and the emergence of a localized surface plasmon resonance (LSPR) band, stressing this unique characteristic of gold nanoparticles. Hence, it is evident that the conversion of nanoparticles from nanoclusters has taken place in the presence of H2O2. Our work here has paved a new path for the detection of bioanalytes, highlighting the merits of rapid readout, sensitivity, and user-friendliness.