BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Electrical stability"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A comprehensive analysis of GaN HEMTs: electro-mechanical behavior, defect generation, and drain LAG reduction with HfO2 layers
    (2023-07) Güneş, Burak
    Gallium Nitride High Electron Mobility Transistors (GaN HEMTs) have rapidly emerged as a transformative technology, owing to the unique properties of the substrate material. They are poised to become a revolutionary advancement in RF amplifier applications, primarily due to their capability to operate at high frequencies and power levels with superior efficiency compared to conventional devices. Despite the rapid progressions, a noticeable gap persists in the literature regarding the relation-ship between mechanical stresses, defect generation, and their subsequent impact on the electrical characteristics of AlGaN/GaN HEMTs. Moreover, current dispersion effects, which are trapping induced reductions in output power, continues to remain a pressing issue. To address these limitations, this study first adopts a multifaceted approach and integrates mechanical simulations and Raman spectroscopy, in order to resolve fine details of stress distributions that a diffraction-limited Raman probe cannot resolve. This enables an extensive modeling of stresses in a typical HEMT structure and helps elucidate the underlying dynamics of defect generation, with the ultimate goal of informing and guiding the development of advanced fabrication techniques. In a second study, an ultrathin blanket dielectric deposition approach was devised to alleviate surface trapping, and consequently, mitigate current dispersion. The proposed streamlined fabrication process yielded a substantial improvement in device performance without compromising the transistor transfer characteristics.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback