A comprehensive analysis of GaN HEMTs: electro-mechanical behavior, defect generation, and drain LAG reduction with HfO2 layers

Available
The embargo period has ended, and this item is now available.

Date

2023-07

Editor(s)

Advisor

Özbay, Ekmel

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
19
views
24
downloads

Series

Abstract

Gallium Nitride High Electron Mobility Transistors (GaN HEMTs) have rapidly emerged as a transformative technology, owing to the unique properties of the substrate material. They are poised to become a revolutionary advancement in RF amplifier applications, primarily due to their capability to operate at high frequencies and power levels with superior efficiency compared to conventional devices. Despite the rapid progressions, a noticeable gap persists in the literature regarding the relation-ship between mechanical stresses, defect generation, and their subsequent impact on the electrical characteristics of AlGaN/GaN HEMTs. Moreover, current dispersion effects, which are trapping induced reductions in output power, continues to remain a pressing issue. To address these limitations, this study first adopts a multifaceted approach and integrates mechanical simulations and Raman spectroscopy, in order to resolve fine details of stress distributions that a diffraction-limited Raman probe cannot resolve. This enables an extensive modeling of stresses in a typical HEMT structure and helps elucidate the underlying dynamics of defect generation, with the ultimate goal of informing and guiding the development of advanced fabrication techniques. In a second study, an ultrathin blanket dielectric deposition approach was devised to alleviate surface trapping, and consequently, mitigate current dispersion. The proposed streamlined fabrication process yielded a substantial improvement in device performance without compromising the transistor transfer characteristics.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type