Browsing by Subject "Electrical performance"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Electrical performance of InAs/AlSb/GaSb superlattice photodetectors(Academic Press, 2016) Tansel, T.; Hostut M.; Elagoz, S.; Kilic A.; Ergun, Y.; Aydınlı, AtillaTemperature dependence of dark current measurements is an efficient way to verify the quality of an infrared detector. Low dark current density values are needed for high performance detector applications. Identification of dominant current mechanisms in each operating temperature can be used to extract minority carrier lifetimes which are highly important for understanding carrier transport and improving the detector performance. InAs/AlSb/GaSb based T2SL N-structures with AlSb unipolar barriers are designed for low dark current with high resistance and detectivity. Here we present electrical and optical performance of such N-structure photodetectors.Item Open Access Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-spreading layer(Optical Society of American (OSA), 2013) Zhang, Z.-H.; Tan, S.T.; Liu W.; Ju, Z.; Zheng, K.; Kyaw, Z.; Ji, Y.; Hasanov, N.; Sun X.W.; Demir, Hilmi VolkanThis work reports both experimental and theoretical studies on the InGaN/GaN light-emitting diodes (LEDs) with optical output power and external quantum efficiency (EQE) levels substantially enhanced by incorporating p-GaN/n-GaN/p-GaN/n-GaN/p-GaN (PNPNP-GaN) current spreading layers in p-GaN. Each thin n-GaN layer sandwiched in the PNPNP-GaN structure is completely depleted due to the built-in electric field in the PNPNP-GaN junctions, and the ionized donors in these n-GaN layers serve as the hole spreaders. As a result, the electrical performance of the proposed device is improved and the optical output power and EQE are enhanced. © 2013 Optical Society of America.