Browsing by Subject "Electric potential"
Now showing 1 - 19 of 19
- Results Per Page
- Sort Options
Item Open Access Analysis of electrical characteristics and magnetic field dependences of YBCO step edge and bicrystal grain boundary junctions for rf-SQUID applications(Institute of Physics, 2004) Fardmanesh, M.; Schubert, J.; Akram, R.; Bick, M.; Banzet, M.; Zander, W.; Zhang, Y.; Krause, H-J.The dc characteristics and magnetic field dependences of Y-Ba-Cu-O bicrystal grain boundary junctions (BGBJs) and step edge junctions (SEJs) were investigated for fabrication of rf-SQUIDs. Test junctions with up to 8 μm widths as well as the junctions of the two types of junction-based rf-SQUID were studied. The SEJs typically showed lower Jc and higher ρN as compared to the BGBJs, resulting in close IcRN products. All the BGBJs showed classical field dependent Ic following their junction width, resembling Fraunhofer patterns. The field sensitivity of the BGBJs' Uc led to low yield submicron BGBJ rf-SQUIDs partially impaired by the Earth's magnetic field. Two major behaviours of low and high field dependences of Ic were observed for the SEJs. Only the low field-sensitive SEJs resulted in micron size junction rf-SQUIDs not impaired by the Earth's magnetic field. The low field-sensitive SEJs led to low I/f noise magnetically stable rf-SQUIDs appropriate for applications in unshielded environments at 77 K.Item Open Access Analysis of finite arrays of circumferentially oriented printed dipoles on electrically large cylinders(Wiley, 2004) Ertürk, V. B.; Güner, B.An efficient and accurate hybrid method of moments (MoM)/Green's function technique in the spatial domain is developed for the rigorous analysis of large, finite phased arrays of circumferentially oriented printed dipoles on electrically large, dielectric-coated, circular cylinders. Basic performance metrics (in the form of array current distribution, active reflection coefficient, far-field patterns, and so forth) of several arrays have been obtained and compared with similar printed arrays on grounded planar substrates. Certain discrepancies have been observed and discussed. © 2004 Wiley Periodicals, Inc.Item Open Access Charging/discharging of Au (core)/silica (shell) nanoparticles as revealed by XPS(American Chemical Society, 2005) Tunc, I.; Demirok, U. K.; Süzer, Şefik; Correa-Duatre, M. A.; Liz-Marzan, L. M.By recording XPS spectra while applying external voltage stress to the sample rod, we can control the extent of charging developed on core-shell-type gold nanoparticles deposited on a copper substrate, in both steady-state and time-resolved fashions. The charging manifests itself as a shift in the measured binding energy of the corresponding XPS peak. Whereas the bare gold nanoparticles exhibit no measurable binding energy shift in the Au 4f peaks, both the Au 4f and the Si 2p peaks exhibit significant and highly correlated (in time and magnitude) shifts in the case of gold (core)/silica (shell) nanoparticles. Using the shift in the Au 4f peaks, the capacitance of the 15-nm gold (core)/6-nm silica (shell) nanoparticle/nanocapacitor is estimated as 60 aF. It is further estimated that, in the fully charged situation, only 1 in 1000 silicon dioxide units in the shell carries a positive charge during our XPS analysis. Our simple method of controlling the charging, by application of an external voltage stress during XPS analysis, enables us to detect, locate, and quantify the charges developed on surface structures in a completely noncontact fashion. © 2005 American Chemical Society.Item Open Access Current constrained voltage scaled reconstruction (CCVSR) algorithm for MR-EIT and its performance with different probing current patterns(Institute of Physics Publishing, 2003) Birgül, Ö.; Eyüboğlu, B. M.; İder, Y. Z.Conventional injected-current electrical impedance tomography (EIT) and magnetic resonance imaging (MRI) techniques can be combined to reconstruct high resolution true conductivity images. The magnetic flux density distribution generated by the internal current density distribution is extracted from MR phase images. This information is used to form a fine detailed conductivity image using an Ohm's law based update equation. The reconstructed conductivity image is assumed to differ from the true image by a scale factor. EIT surface potential measurements are then used to scale the reconstructed image in order to find the true conductivity values. This process is iterated until a stopping criterion is met. Several simulations are carried out for opposite and cosine current injection patterns to select the best current injection pattern for a 2D thorax model. The contrast resolution and accuracy of the proposed algorithm are also studied. In all simulation studies, realistic noise models for voltage and magnetic flux density measurements are used. It is shown that, in contrast to the conventional EIT techniques, the proposed method has the capability of reconstructing conductivity images with uniform and high spatial resolution. The spatial resolution is limited by the larger element size of the finite element mesh and twice the magnetic resonance image pixel size.Item Open Access Dynamo equation solution using Finite Volume Method for midlatitude ionosphere(KeAi Communications Co., 2018) Arikan, F.; Sezen, U.; Arıkan, OrhanIonosphere is the layer of atmosphere which plays an important role both in space based navigation, positioning and communication systems and HF signals. The structure of the electron density is a function of spatio-temporal variables. The electrodynamic medium is also influenced with earth's magnetic field, atmospheric chemistry and plasma flow and diffusion under earth's gravitation. Thus, the unified dynamo equation for the ionosphere is a second order partial differential equation for quasi-static electric potential with variable spatial coefficients. In this study, the inhomogeneous and anisotropic nature of ionosphere that can be formulated as a divergence equation is solved numerically using Finite Volume Method for the first time. The ionosphere and the operators are discretized for the midlatitude region and the solution domain is investigated for Dirichlet type boundary conditions that are built in into the diffusion equation. The analysis indicates that FVM can be a powerful tool in obtaining parametric electrostatic potential distribution in ionosphere.Item Open Access Effect of rf pumping frequency and rf input power on the flux to voltage transfer function of rf-SQUIDs(IEEE, 2007) Akram, Rizwan; Eker, Taylan; Bozbey, Ali; Fardmanesh, Mehdi; Schubert, J.; Banzet, M.We present the results on the correlation between the flux to voltage transfer function, Vspp, of the rf-SQUID and the rf-bias frequency as well as rf-bias power. Measurements were performed for different SQUID gradiometer samples chosen from the same batch or different batches. In order to have full control on the electronics parameters, an experimental rf-SQUID circuit was designed and implemented with an operation frequency of 600 MHz to 900 MHz. According to our findings, It has been observed that at any particular rf-bias power, Vspp vs. rf-bias frequency shows Sine-like behavior. We observed that the main lobe maxima exist close to the resonance frequency of the LC tank circuit and by changing only the power, amplitude of the main lobe and side lobes can be controlled. The Vspp vs. rf-bias power analysis shows that maximum of Vspp, strongly depends on the bias frequency. This can be correlated with the S11 parameter of LC tank circuit. We also observed that the devices from the same batch show main lobe maxima at different frequencies and/or power. Our SQUIDs with high working frequency gave their maxima at lower rf-bias powers leading to the need of having high frequency electronics with low bias power handling capabilities. It has also been observed that the SQUIDs from the same chip show similar characteristics regarding Vspp vs. frequency and power while the SQUIDs from different batches show completely different behavior for a fixed LC tank circuit configuration.Item Open Access Electrostatic force spectroscopy of near surface localized states(Institute of Physics Publishing Ltd., 2005) Dâna, A.; Yamamoto, Y.Electrostatic force microscopy at cryogenic temperatures is used to probe the electrostatic interaction of a conductive atomic force microscopy tip and electronic charges trapped in localized states in an insulating layer on a semiconductor. Measurement of the frequency shift of the cantilever as a function of tip-sample bias voltage shows discrete peaks at certain voltages when the tip is located near trap centres. These discrete changes in frequency are attributed to one by one filling of individual electronic states when the quantized energies traverse the substrate conduction band Fermi energy as the tip-sample voltage is increased. Theoretical analysis of the experiment suggests that such a measurement of the cantilever frequency shift as a function of bias voltage can be interpreted as an AC force measurement, from which spectroscopic information about the location and energy of localized states can be deduced. Experimental results from the study of a sample with InAs quantum dots as trap centres are presented.Item Open Access Experimental results for 2D magnetic resonance electrical impedance tomography (MR-EIT) using magnetic flux density in one direction(Institute of Physics Publishing, 2003) Birgül, Ö.; Eyüboğlu, B. M.; İder, Y. Z.Magnetic resonance electrical impedance tomography (MR-EIT) is an emerging imaging technique that reconstructs conductivity images using magnetic flux density measurements acquired employing MRI together with conventional EIT measurements. In this study, experimental MR-EIT images from phantoms with conducting and insulator objects are presented. The technique is implemented using the 0.15 T Middle East Technical University MRI system. The dc current method used in magnetic resonance current density imaging is adopted. A reconstruction algorithm based on the sensitivity matrix relation between conductivity and only one component of magnetic flux distribution is used. Therefore, the requirement for object rotation is eliminated. Once the relative conductivity distribution is found, it is scaled using the peripheral voltage measurements to obtain the absolute conductivity distribution. Images of several insulator and conductor objects in saline filled phantoms are reconstructed. The L2 norm of relative error in conductivity values is found to be 13%, 17% and 14% for three different conductivity distributions.Item Open Access Gunn oscillations in GaN channels(IOP, 2004) Sevik, Cem; Bulutay, CeyhunGallium nitride with its high negative differential mobility threshold is an appealing material for high power millimetre-wave oscillators as a Gunn diode. By means of extensive ensemble Monte Carlo simulations, the dynamics of large-amplitude Gunn domain oscillations from 120 GHz to 650 GHz is studied in detail. Their operations are checked under both impressed single-tone sinusoidal bias and external tank circuit conditions. The width of the doping notch is observed to enhance higher harmonic efficiency at the expense of the fundamental frequency up to a critical value, beyond which sustained Gunn oscillations cease. The degeneracy effects due to the Pauli exclusion principle are also considered, but their effects are seen to be negligible within the realistic bounds of the Gunn diode operation.Item Open Access High-performance solar-blind AlGaN Schottky photodiodes(Materials Research Society, 2003) Bıyıklı, Necmi; Kartaloglu, T.; Aytur, O.; Kimukin, I.; Özbay, EkmelHigh-performance solar-blind AlGaN-based Schottky photodiodes have been demonstrated. The detectors were fabricated on MOCVD-grown AlGaN/GaN heterostructures using a microwave-compatible fabrication process. Current-voltage, spectral responsivity, noise, and high-speed characteristics of the detectors were measured and analyzed. Dark currents lower than 1 pA at bias voltages as high as 30 V were obtained. True solar-blind detection was achieved with a cut-off wavelength lower than 266 nm. A peak device responsivity of 78 mA/W at 250 nm was measured under 15 V reverse bias. A visible rejection of more than 4 orders of magnitude was observed. The solar-blind photodiodes exhibited noise densities below the measurement setup noise floor of 3×10 -29 A 2/Hz around 10 KHz. High-speed measurements at the solar-blind wavelength of 267 nm resulted in 3-dB bandwidths as high as 870 MHz.Item Open Access Impedimetric detection and lumped element modelling of a hemagglutination assay in microdroplets(Royal Society of Chemistry, 2016) Marcali, M.; Elbuken, C.Droplet-based microfluidic systems offer tremendous benefits for high throughput biochemical assays. Despite the wide use of electrical detection for microfluidic systems, application of impedimetric sensing for droplet systems is very limited. This is mainly due to the insulating oil-based continuous phase used for most aqueous samples of interest. We present modelling and experimental verification of impedimetric detection of hemagglutination in microdroplets. We have detected agglutinated red blood cells in microdroplets and screened whole blood samples for multiple antibody sera using conventional microelectrodes. We were able to form antibody and whole blood microdroplets in PDMS microchannels without any tedious chemical surface treatment. Following the injection of a blood sample into antibody droplets, we have detected the agglutination-positive and negative droplets in an automated manner. In order to understand the characteristics of impedimetric detection inside microdroplets, we have developed the lumped electrical circuit equivalent of an impedimetric droplet content detection system. The empirical lumped element values are in accordance with similar models developed for single phase electrical impedance spectroscopy systems. The presented approach is of interest for label-free, quantitative analysis of droplets. In addition, the standard electronic equipment used for detection allows miniaturized detection circuitries that can be integrated with a fluidic system for a quantitative microdroplet-based hemagglutination assay that is conventionally performed in well plates.Item Open Access Modeling of electrodes and implantable pulse generator cases for the analysis of implant tip heating under MR imaging(Wiley-Blackwell Publishing, Inc., 2015) Acikel, V.; Uslubas, A.; Atalar, ErginPurpose: The authors purpose is to model the case of an implantable pulse generator (IPG) and the electrode of an active implantable medical device using lumped circuit elements in order to analyze their effect on radio frequency induced tissue heating problem during a magnetic resonance imaging (MRI) examination. Methods: In this study, IPG case and electrode are modeled with a voltage source and impedance. Values of these parameters are found using the modified transmission line method (MoTLiM) and the method of moments (MoM) simulations. Once the parameter values of an electrode/IPG case model are determined, they can be connected to any lead, and tip heating can be analyzed. To validate these models, both MoM simulations and MR experiments were used. The induced currents on the leads with the IPG case or electrode connections were solved using the proposed models and the MoTLiM. These results were compared with the MoM simulations. In addition, an electrode was connected to a lead via an inductor. The dissipated power on the electrode was calculated using the MoTLiM by changing the inductance and the results were compared with the specific absorption rate results that were obtained using MoM. Then, MRI experiments were conducted to test the IPG case and the electrode models. To test the IPG case, a bare lead was connected to the case and placed inside a uniform phantom. During a MRI scan, the temperature rise at the lead was measured by changing the lead length. The power at the lead tip for the same scenario was also calculated using the IPG case model and MoTLiM. Then, an electrode was connected to a lead via an inductor and placed inside a uniform phantom. During a MRI scan, the temperature rise at the electrode was measured by changing the inductance and compared with the dissipated power on the electrode resistance. Results: The induced currents on leads with the IPG case or electrode connection were solved for using the combination of the MoTLiM and the proposed lumped circuit models. These results were compared with those from the MoM simulations. The mean square error was less than 9%. During the MRI experiments, when the IPG case was introduced, the resonance lengths were calculated to have an error less than 13%. Also the change in tip temperature rise at resonance lengths was predicted with less than 4% error. For the electrode experiments, the value of the matching impedance was predicted with an error less than 1%. Conclusions: Electrical models for the IPG case and electrode are suggested, and the method is proposed to determine the parameter values. The concept of matching of the electrode to the lead is clarified using the defined electrode impedance and the lead Thevenin impedance. The effect of the IPG case and electrode on tip heating can be predicted using the proposed theory. With these models, understanding the tissue heating due to the implants becomes easier. Also, these models are beneficial for implant safety testers and designers. Using these models, worst case conditions can be determined and the corresponding implant test experiments can be planned.Item Open Access Modeling of subsonic cavity flows by neural networks(IEEE, 2004-06) Efe, M.Ö.; Debiasi, M.; Özbay, Hitay; Samimy, M.Influencing the behavior of a flow field is a core issue as its improvement can yield significant increase of the efficiency and performance of fluidic systems. On the other hand, the tools of classical control systems theory are not directly applicable to processes displaying spatial continuity as in fluid flows. The cavity flow is a good example of this and a recent research focus in aerospace science is its modeling and control. The objective is to develop a finite dimensional representative model for the system with appropriately defined inputs and outputs. Towards the goal of reconstructing the pressure fluctuations measured at the cavity floor, this paper demonstrates that given some history of inputs and outputs, a neural network based feedforward model can be developed such that the response of the neural network matches the measured response. The advantages of using such a model are the representational simplicity of the model, structural flexibility to enable controller design and the ability to store information in an interconnected structure.Item Open Access Persistent currents in helical structures(American Physical Society, 2004) Iskin, M.; Kulik, I. O.The recent discovery of mesoscopic electronic structures, in particular the carbon nanotubes, made necessary an investigation of what effect a helical symmetry of the conductor (metal or semiconductor) may have on the persistent current oscillations, We investigate persistent currents in helical structures which are nondecaying in time, not requiring a voltage bias, dissipationless stationary flow of electrons in a normal-metallic or semiconducting cylinder or circular wire of mesoscopic dimension. In the presence of magnetic flux along the toroidal structure, helical symmetry couples circular and longitudinal currents to each other. Our calculations suggest that circular persistent currents in these structures have two components with periods Φ0 and Φ0/s (s is an integer specific to any geometry). However, resultant circular persistent current oscillations have Φ0 period.Item Open Access Point normal metal-superconductor (NS) contact in nonballistic regime(World Scientific Publishing, 2003) Askerzade, İ. N.; Kulik, Igor OrestovichWe analyze the point NS contact conductivity taking into account the depression of superconductivity at high-injection current density and Andreev reflection at the adaptive NS boundary. The dependence of the excess current on the voltage, as well as conductivity of contact at arbitrary voltage is obtained.Item Open Access Time-resolved XPS analysis of the SiO2/Si system in the millisecond range(2004) Demirok, U. K.; Ertas, G.; Süzer, ŞefikBy applying voltage pulses to the sample rod while recording the spectrum, we show, for the first time, that it is possible to obtain a time-resolved XPS spectrum in the millisecond range. The Si 2p spectrum of a silicon sample containing a ca. 400-nm oxide layer displays a time-dependent charging shift of ca. 1.7 eV with respect to the Au 4f peaks of a gold metal strip in contact with the sample. When gold is deposited as C12-thiol-capped nanoclusters onto the same sample, this time the Au 4f peaks also display time-dependent charging behavior that is slightly different from that of the Si 2p peak. This charging/discharging is related to emptying/filling of the hole traps in the oxide layer by the stray electrons within the vacuum system guided by the external voltage pulses applied to the sample rod, which can be used to extract important parameter(s) related to the dielectric properties of surface structures.Item Open Access Two-dimensional x-ray photoelectron spectroscopy for composite surface analysis(2008) Süzer, Şefik; Sezen, H.; Dâna, A.We describe a method for obtaining two-dimensional X-ray photoelectron spectroscopic data derived from the frequency dependence of the XPS peaks recorded under electrical square-wave pulses, which control and affect the binding energy positions via the electrical potentials developed as a result of charging. By using cross-correlations between various peaks, our technique enables us to elucidate electrical characteristics of surface structures of composite samples and bring out various correlations between hidden/overlapping peaks. © 2008 American Chemical Society.Item Open Access Uniqueness and reconstruction in magnetic resonance-electrical impedance tomography (MR-EIT)(Institute of Physics Publishing, 2003) İder, Y. Z.; Onart, S.; Lionheart, W. R. B.Magnetic resonance-electrical impedance tomography (MR-EIT) was first proposed in 1992. Since then various reconstruction algorithms have been suggested and applied. These algorithms use peripheral voltage measurements and internal current density measurements in different combinations. In this study the problem of MR-EIT is treated as a hyperbolic system of first-order partial differential equations, and three numerical methods are proposed for its solution. This approach is not utilized in any of the algorithms proposed earlier. The numerical solution methods are integration along equipotential surfaces (method of characteristics), integration on a Cartesian grid, and inversion of a system matrix derived by a finite difference formulation. It is shown that if some uniqueness conditions are satisfied, then using at least two injected current patterns, resistivity can be reconstructed apart from a multiplicative constant. This constant can then be identified using a single voltage measurement. The methods proposed are direct, non-iterative, and valid and feasible for 3D reconstructions. They can also be used to easily obtain slice and field-of-view images from a 3D object. 2D simulations are made to illustrate the performance of the algorithms.Item Open Access XPS analysis with pulsed voltage stimuli(2006) Karabudak, E.; Demirok, U. K.; Süzer, ŞefikWe record XPS spectra while applying 0 to +10 V or 0 to -10 V square pulses to the sample rod, which normally results in twinning of all peaks at correspondingly increased (for +10 V) or decreased (for -10 V) binding energies. For poorly conducting samples, like silicon oxide layer on a silicon substrate, the twinned peaks appear at different energies due to differential charging, which also vary with respect to the frequency of the applied pulses. Moreover, the frequency dependence varies with the thickness and can be correlated with the capacitance of the oxide layer. The technique is simple and can lead to extract important information related with dielectric properties of surface structures in a totally non-contact fashion. © 2005 Elsevier B.V. All rights reserved.