Browsing by Subject "Edge computing"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Offloading deep learning empowered image segmentation from UAV to edge server(IEEE, 2021-08-30) İlhan, Hüseyin Enes; Özer, Sedat; Kurt, Güneş Karabulut; Çırpan, Hakan AliImage and video analysis in unmanned aerial vehicle (UAV) systems have been a recent interest in many applications since the images taken by UAV systems can provide useful information in many domains including maintenance, surveillance and entertainment. However, a constraint on UAVs is having limited battery power and recent developments in the artificial intelligence (AI) domain encourages many applications to run computationally heavy algorithms on the taken UAV images. Such applications drain the power from the on-board battery rapidly, while requiring strong computationally strong resources. An alternative to that approach is offloading heavy tasks such as object segmentation to a remote (edge) server and perform the heavy computation on that server. However, the effect of the communication system and the used channel introduce noise on the transferred data and the effect of the noise due to the use of such LTE communication system on pre-trained deep networks has not been previously studied in the literature. In this paper, we study one such scenario where the images taken by UAVs and (the same images) transferred to an edge server via an LTE communication system under different scenarios. In our case, the edge server runs an off-the-shelf pretrained deep learning algorithm to segment the transmitted image. We provide an analysis of the effect of the wireless channel and the communication system on the final segmentation of the transmitted image on such a scenario.Item Open Access Offloading deep learning powered vision tasks from UAV to 5G edge server with denoising(Institute of Electrical and Electronics Engineers, 2023-06-20) Özer, S.; İlhan, H. E.; Özkanoğlu, Mehmet Akif; Çırpan, H. A.Offloading computationally heavy tasks from an unmanned aerial vehicle (UAV) to a remote server helps improve battery life and can help reduce resource requirements. Deep learning based state-of-the-art computer vision tasks, such as object segmentation and detection, are computationally heavy algorithms, requiring large memory and computing power. Many UAVs are using (pretrained) off-the-shelf versions of such algorithms. Offloading such power-hungry algorithms to a remote server could help UAVs save power significantly. However, deep learning based algorithms are susceptible to noise, and a wireless communication system, by its nature, introduces noise to the original signal. When the signal represents an image, noise affects the image. There has not been much work studying the effect of the noise introduced by the communication system on pretrained deep networks. In this work, we first analyze how reliable it is to offload deep learning based computer vision tasks (including both object segmentation and detection) by focusing on the effect of various parameters of a 5G wireless communication system on the transmitted image and demonstrate how the introduced noise of the used 5G system reduces the performance of the offloaded deep learning task. Then solutions are introduced to eliminate (or reduce) the negative effect of the noise. Proposed framework starts with introducing many classical techniques as alternative solutions, and then introduces a novel deep learning based solution to denoise the given noisy input image. The performance of various denoising algorithms on offloading both object segmentation and object detection tasks are compared. Our proposed deep transformer-based denoiser algorithm (NR-Net) yields state-of-the-art results in our experiments.