Offloading deep learning powered vision tasks from UAV to 5G edge server with denoising

Date

2023-06-20

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Vehicular Technology

Print ISSN

0018-9545

Electronic ISSN

1939-9359

Publisher

Institute of Electrical and Electronics Engineers

Volume

72

Issue

6

Pages

8035 - 8048

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
39
views
28
downloads

Series

Abstract

Offloading computationally heavy tasks from an unmanned aerial vehicle (UAV) to a remote server helps improve battery life and can help reduce resource requirements. Deep learning based state-of-the-art computer vision tasks, such as object segmentation and detection, are computationally heavy algorithms, requiring large memory and computing power. Many UAVs are using (pretrained) off-the-shelf versions of such algorithms. Offloading such power-hungry algorithms to a remote server could help UAVs save power significantly. However, deep learning based algorithms are susceptible to noise, and a wireless communication system, by its nature, introduces noise to the original signal. When the signal represents an image, noise affects the image. There has not been much work studying the effect of the noise introduced by the communication system on pretrained deep networks. In this work, we first analyze how reliable it is to offload deep learning based computer vision tasks (including both object segmentation and detection) by focusing on the effect of various parameters of a 5G wireless communication system on the transmitted image and demonstrate how the introduced noise of the used 5G system reduces the performance of the offloaded deep learning task. Then solutions are introduced to eliminate (or reduce) the negative effect of the noise. Proposed framework starts with introducing many classical techniques as alternative solutions, and then introduces a novel deep learning based solution to denoise the given noisy input image. The performance of various denoising algorithms on offloading both object segmentation and object detection tasks are compared. Our proposed deep transformer-based denoiser algorithm (NR-Net) yields state-of-the-art results in our experiments.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)