Browsing by Subject "Ecotoxicity"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Effects of laser ablated silver nanoparticles on Lemna minor(Elsevier, 2014) Üçüncü, E.; Özkan, A. D.; Kurşungöz, C.; Ülger, Z. E.; Ölmez, T. T.; Tekinay, T.; Ortaç, B.; Tunca E.Item Open Access Single nozzle electrospinning promoted hierarchical shell wall structured zinc oxide hollow tubes for water remediation(Elsevier, 2021-03-09) Balusamy, Brabu; Senthamizhan, Anitha; Çelebioğlu, Aslı; Uyar, TamerHypothesis Electrospun metal oxide hollow tubes are of great interest owing to their unique structural advantages compared to solid nanofibers. Although intensive research on preparation of hollow tubes have been devoted, formation of hierarchical shells remains a significant challenge. Experiments Herein, we demonstrate the fabrication of highly uniform, reproducible and industrially feasible ZnO hollow tubes (ZHT) with two-level hierarchical shells via a simple and versatile single-nozzle electrospinning strategy coupled with subsequent controlled thermal treatment. Findings The morphological investigation reveals that the hollow tubes built from nanostructures which has unique surface structure on their wall. The mechanism by which the composite fibers transferred to hollow tubes is primarily based on the evaporation rate of the polymeric template. Notably, tuning the heating rate from 5 °C to 50 °C/min possess adverse effect on formation of hollow tubes, thus subsequently produced ZnO nanoplates (ZNP). The comparative photocatalytic analysis emphasized that ZHT shows higher photocatalytic activity than ZNP. This finding has made an evident that the inherent abundant defects in the electrospun derived nanostructures are not only sufficient for improving the photocatalytic activity. Studies on bacterial growth inhibition showcased a superior bactericidal effect against Staphylococcus aureus and Escherichia coli implying its potentiality for disinfecting the bacteria from water.Item Open Access Toxicity of lanthanum oxide (La2O3) nanoparticles in aquatic environments(Royal Society of Chemistry, 2015) Balusamy, B.; Taştan, B. E.; Ergen, S. F.; Uyar, Tamer; Tekinay, T.This study demonstrates the acute toxicity of lanthanum oxide nanoparticles (La2O3 NP) on two sentinel aquatic species, fresh-water microalgae Chlorella sp. and the crustacean Daphnia magna. The morphology, size and charge of the nanoparticles were systematically studied. The algal growth inhibition assay confirmed absence of toxic effects of La2O3 NP on Chlorella sp., even at higher concentration (1000 mg L-1) after 72 h exposure. Similarly, no significant toxic effects were observed on D. magna at concentrations of 250 mg L-1 or less, and considerable toxic effects were noted in higher concentrations (effective concentration [EC50] 500 mg L-1; lethal dose [LD50] 1000 mg L-1). In addition, attachment of La2O3 NP on aquatic species was demonstrated using microscopy analysis. This study proved to be beneficial in understanding acute toxicity in order to provide environmental protection as part of risk assessment strategies.