Browsing by Subject "Drug Delivery Systems"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers(Elsevier, 2014) Canbolat, M. F.; Celebioglu A.; Uyar, TamerIn this study, we select naproxen (NAP) as a reference drug and electrospun poly (e-caprolactone) (PCL) nanofibers as a fibrous matrix for our drug-delivery system. NAP was complexed with beta-cyclodextrin (βCD) to form inclusion complex (NAP-βCD-IC) and then NAP-βCD-IC was incorporated into PCL nanofibers via electrospinning. The incorporation of NAP without CD-IC into electrospun PCL was also carried out for a comparative study. Our aim is to analyze the release profiles of NAP from PCL/NAP and PCL/NAP-βCD-IC nanofibers and we investigate the effect of CD-IC on the release behavior of NAP from the nanofibrous PCL matrix. The characterization of NAP-βCD-IC and the presence of CD-IC in PCL/NAP-βCD-IC nanofibers were studied by FTIR, XRD, TGA, NMR and SEM. The SEM imaging of the electrospun PCL/NAP and PCL/NAP-βCD-IC nanofibers reveal that the average fiber diameter of these nanofibers is around 300. nm, in addition, the aggregates of CD-IC in PCL/NAP-βCD-IC nanofibers is observed. The release study of NAP in buffer solution elucidate that the PCL/NAP-βCD-IC nanofibers have higher release amount of NAP than the PCL/NAP nanofibers due to the solubility enhancement of NAP by CD-IC.Item Open Access Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine(American Chemical Society, 2016-03) Fais, S.; O'Driscoll, L.; Borras, F. E.; Buzas, E.; Camussi, G.; Cappello, F.; Carvalho, J.; Cordeiro Da Silva, A.; Del Portillo, H.; El Andaloussi, S.; Ficko Trček, T.; Furlan, R.; Hendrix, A.; Gursel, I.; Kralj-Iglic, V.; Kaeffer, B.; Kosanovic, M.; Lekka, M. E.; Lipps, G.; Logozzi, M.; Marcilla, A.; Sammar, M.; Llorente, A.; Nazarenko, I.; Oliveira, C.; Pocsfalvi, G.; Rajendran, L.; Raposo, G.; Rohde, E.; Siljander, P.; Van, N. G.; Vasconcelos, M. H.; Yáñez-Mó, M.; Yliperttula, M. L.; Zarovni, N.; Zavec, A. B.; Giebel, B.Recent research has demonstrated that all body fluids assessed contain substantial amounts of vesicles that range in size from 30 to 1000 nm and that are surrounded by phospholipid membranes containing different membrane microdomains such as lipid rafts and caveolae. The most prominent representatives of these so-called extracellular vesicles (EVs) are nanosized exosomes (70-150 nm), which are derivatives of the endosomal system, and microvesicles (100-1000 nm), which are produced by outward budding of the plasma membrane. Nanosized EVs are released by almost all cell types and mediate targeted intercellular communication under physiological and pathophysiological conditions. Containing cell-type-specific signatures, EVs have been proposed as biomarkers in a variety of diseases. Furthermore, according to their physical functions, EVs of selected cell types have been used as therapeutic agents in immune therapy, vaccination trials, regenerative medicine, and drug delivery. Undoubtedly, the rapidly emerging field of basic and applied EV research will significantly influence the biomedicinal landscape in the future. In this Perspective, we, a network of European scientists from clinical, academic, and industry settings collaborating through the H2020 European Cooperation in Science and Technology (COST) program European Network on Microvesicles and Exosomes in Health and Disease (ME-HAD), demonstrate the high potential of nanosized EVs for both diagnostic and therapeutic (i.e., theranostic) areas of nanomedicine.