BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Distributed runtime"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Safe data parallelism for general streaming
    (Institute of Electrical and Electronics Engineers, 2015) Schneider S.; Hirzel M.; Gedik, B.; Wu, Kun-Lung
    Streaming applications process possibly infinite streams of data and often have both high throughput and low latency requirements. They are comprised of operator graphs that produce and consume data tuples. General streaming applications use stateful, selective, and user-defined operators. The stream programming model naturally exposes task and pipeline parallelism, enabling it to exploit parallel systems of all kinds, including large clusters. However, data parallelism must either be manually introduced by programmers, or extracted as an optimization by compilers. Previous data parallel optimizations did not apply to selective, stateful and user-defined operators. This article presents a compiler and runtime system that automatically extracts data parallelism for general stream processing. Data-parallelization is safe if the transformed program has the same semantics as the original sequential version. The compiler forms parallel regions while considering operator selectivity, state, partitioning, and graph dependencies. The distributed runtime system ensures that tuples always exit parallel regions in the same order they would without data parallelism, using the most efficient strategy as identified by the compiler. Our experiments using 100 cores across 14 machines show linear scalability for parallel regions that are computation-bound, and near linear scalability when tuples are shuffled across parallel regions.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    SPL: an extensible language for distributed stream processing
    (Association for Computing Machinery, 2017) Hirzel M.; Schneider S.; Gedik, B.
    Big data is revolutionizing how all sectors of our economy do business, including telecommunication, transportation, medical, and finance. Big data comes in two flavors: data at rest and data in motion. Processing data in motion is stream processing. Stream processing for big data analytics often requires scale that can only be delivered by a distributed system, exploiting parallelism on many hosts and many cores. One such distributed stream processing system is IBM Streams. Early customer experience with IBM Streams uncovered that another core requirement is extensibility, since customers want to build high-performance domain-specific operators for use in their streaming applications. Based on these two core requirements of distribution and extensibility, we designed and implemented the Streams Processing Language (SPL). This article describes SPL with an emphasis on the language design, distributed runtime, and extensibility mechanism. SPL is now the gateway for the IBM Streams platform, used by our customers for stream processing in a broad range of application domains. © 2017 ACM.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback