SPL: an extensible language for distributed stream processing

Date

2017

Authors

Hirzel M.
Schneider S.
Gedik, B.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
18
downloads

Citation Stats

Attention Stats

Series

Abstract

Big data is revolutionizing how all sectors of our economy do business, including telecommunication, transportation, medical, and finance. Big data comes in two flavors: data at rest and data in motion. Processing data in motion is stream processing. Stream processing for big data analytics often requires scale that can only be delivered by a distributed system, exploiting parallelism on many hosts and many cores. One such distributed stream processing system is IBM Streams. Early customer experience with IBM Streams uncovered that another core requirement is extensibility, since customers want to build high-performance domain-specific operators for use in their streaming applications. Based on these two core requirements of distribution and extensibility, we designed and implemented the Streams Processing Language (SPL). This article describes SPL with an emphasis on the language design, distributed runtime, and extensibility mechanism. SPL is now the gateway for the IBM Streams platform, used by our customers for stream processing in a broad range of application domains. © 2017 ACM.

Source Title

ACM Transactions on Programming Languages and Systems

Publisher

Association for Computing Machinery

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English