Browsing by Subject "Diffraction models"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Scalar diffraction field calculation from curved surfaces via Gaussian beam decomposition(Optical Society of America, 2012-06-29) Şahin, E.; Onural, L.We introduce a local signal decomposition method for the analysis of three-dimensional (3D) diffraction fields involving curved surfaces. We decompose a given field on a two-dimensional curved surface into a sum of properly shifted and modulated Gaussian-shaped elementary signals. Then we write the 3D diffraction field as a sum of Gaussian beams, each of which corresponds to a modulated Gaussian window function on the curved surface. The Gaussian beams are propagated according to a derived approximate expression that is based on the Rayleigh-Sommerfeld diffraction model. We assume that the given curved surface is smooth enough that the Gaussian window functions on it can be treated as written on planar patches. For the surfaces that satisfy this assumption, the simulation results show that the proposed method produces quite accurate 3D field solutions.Item Open Access Thereconstruction quality improvement of holographic stereograms via variable size segmentation(IEEE, 2010) Şahin, Erdem; Onural, Levent; Kang, HoonjongAs computer generated holograms becomes more common, the fast computation of holographic interference patterns in digital environment becomes a necessity. Since the computation time of holograms via Fresnel (or Rayleigh-Sommerfeld) diffraction models makes real time applications impossible, the holographic stereograms are developed to be a solution for this problem. Holographic stereograms divide the hologram plane into segments. In phase added stereograms the coordinates of 3D source points are used while calculating the diffraction field. And that enables to calculate the diffraction field with appropriate sized FFTs. Although the phase added stereograms are advantageous in terms of computation time, the quality of the reconstructed three dimensional images may not be satisfactory. The main reason is that the diffraction field of a given point source is approximated as a pure complex sinusuoid in each segment. To increase the reconstruction quality, we propose a method that uses variable sized segments, as opposed to previously developed holographic stereograms that use fixed sized segments. While approximating the diffraction field of a point source, higher frequency regions are covered with smaller segments and lower frequency regions with larger segments. As a result of this, we keep the total number of oscillations of pure sinusoidal waves constant in each segment. The simulations that we carried out for a point source show that we are able to obtain better quality reconstruction with our method. ©2010 IEEE.