Scalar diffraction field calculation from curved surfaces via Gaussian beam decomposition

Date

2012-06-29

Authors

Şahin, E.
Onural, L.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
29
downloads

Citation Stats

Series

Abstract

We introduce a local signal decomposition method for the analysis of three-dimensional (3D) diffraction fields involving curved surfaces. We decompose a given field on a two-dimensional curved surface into a sum of properly shifted and modulated Gaussian-shaped elementary signals. Then we write the 3D diffraction field as a sum of Gaussian beams, each of which corresponds to a modulated Gaussian window function on the curved surface. The Gaussian beams are propagated according to a derived approximate expression that is based on the Rayleigh-Sommerfeld diffraction model. We assume that the given curved surface is smooth enough that the Gaussian window functions on it can be treated as written on planar patches. For the surfaces that satisfy this assumption, the simulation results show that the proposed method produces quite accurate 3D field solutions.

Source Title

Journal of the Optical Society of America A: Optics and Image Science, and Vision

Publisher

Optical Society of America

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English