Browsing by Subject "Difference matrix"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Çarpıcıdan bağımsız ortak fark matrisi kullanarak video ve görüntü işleme(IEEE, 2009-04) Çetin, A. Enis; Duman, Kaan; Tuna, Hakan; Eryıldırım, AbdulkadirBu bildiride gerçel sayılar üzerinde yarı grup kuran yeni bir iletmen tanımlayarak elde edilen bir bölge betimleyicisi ile hareketli obje takibi, yüz sezimi, plaka bulma, bölge betimleme için kullanılabilecek hızlı bir algoritma sunuyoruz. Bu yeni iletmen hiçbir çarpma gerektirmez. Bu iletmeni kullanarak, imge bölgelerini nitelendiren ve ortak fark adı verilen bir matris tanımlıyoruz. Plaka bulma uygulamasında ortak fark matrislerinı plaka bölgelerinden kestirip, bunları bir veritabanında saklıyoruz. Plaka bölgelerini gerçek zamanlı videoda tanımlamak için ilk önce videodaki hareketli bölgeleri taşıyan imgeleri belirliyoruz, sonra hareketli bölgelerin içinde ya da bütün resim içinde plaka büyüklüğündeki bölgelerin ortak ayrık matrislerini veritabanındaki plaka ortak ayrık matrisleriyle karşılaştırarak bölge içinde plaka olup olmadığını belirliyoruz.Item Open Access Object tracking under illumination variations using 2D-cepstrum characteristics of the target(IEEE, 2010) Cogun, Fuat; Çetin, A. EnisMost video processing applications require object tracking as it is the base operation for real-time implementations such as surveillance, monitoring and video compression. Therefore, accurate tracking of an object under varying scene conditions is crucial for robustness. It is well known that illumination variations on the observed scene and target are an obstacle against robust object tracking causing the tracker lose the target. In this paper, a 2D-cepstrum based approach is proposed to overcome this problem. Cepstral domain features extracted from the target region are introduced into the covariance tracking algorithm and it is experimentally observed that 2D-cepstrum analysis of the target object provides robustness to varying illumination conditions. Another contribution of the paper is the development of the co-difference matrix based object tracking instead of the recently introduced covariance matrix based method. ©2010 IEEE.Item Open Access Target detection and classification in SAR images using region covariance and co-difference(SPIE, 2009-04) Duman, Kaan; Eryıldırım, Abdulkadir; Çetin, A. EnisIn this paper, a novel descriptive feature parameter extraction method from synthetic aperture radar (SAR) images is proposed. The new approach is based on region covariance (RC) method which involves the computation of a covariance matrix whose entries are used in target detection and classification. In addition the region co-difference matrix is also introduced. Experimental results of object detection in MSTAR (moving and stationary target recognition) database are presented. The RC and region co-difference method delivers high detection accuracy and low false alarm rates. It is also experimentally observed that these methods produce better results than the commonly used principal component analysis (PCA) method when they are used with different distance metrics introduced. © 2009 SPIE.