Browsing by Subject "DNA repair"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Analysis of MYH Tyr165Cys and Gly382Asp variants in childhood leukemias(Springer, 2003) Akyerli, C. B.; Özbek, U.; Aydin-Sayitoǧlu, M.; Sirma, S.; Özçelik, T.[No abstract available]Item Open Access DNA end-independent activation of DNA-PK mediated via association with the DNA-binding protein C1D(1998) Yavuzer, U.; Smith, G. C. M.; Bliss, T.; Werner, D.; Jackson, S. P.DNA-dependent protein kinase (DNA-PK), which is involved in DNA double- strand break repair and V(D)J recombination, is comprised of a DNA-targeting component termed Ku and an ~465-kD catalytic subunit, DNA-PK(cs). Although DNA-PK phosphorylates proteins in the presence of DSBs or other discontinuities in the DNA double helix in vitro, the possibility exists that it is also activated in other circumstances via its association with additional proteins. Here, through use of the yeast two-hybrid screen, we discover that the recently identified high affinity DNA binding protein C1D interacts with the putative leucine zipper region of DNA-PK(cs). Furthermore, we show that C1D can interact with DNA-PK in mammalian cells and that C1D is a very effective DNA-PK substrate in vitro. Finally, we establish that C1D directs the activation of DNA-PK in a manner that does not require DNA termini. Therefore, these studies provide a function for C1D and suggest novel mechanisms for DNA-PK activation in vivo.Item Open Access DNA repair gene polymorphisms and bladder cancer susceptibility in a Turkish population(International Institute of Anticancer Research, 2006) Karahalil, B.; Kocabas, N. A.; Özçelik, T.Background: Occupational exposure and life style preferences, such as smoking are the main known environmental susceptibility factors for bladder cancer. A growing list of chemicals has been shown to induce oxidative DNA damage. Base excision repair (BER) genes (X-ray repair cross complementing 1, XRCC1 and human 8-oxoguanine DNA glycosylase 1, OGG1) may play a key role in maintaining genome integrity and preventing cancer development. Materials and Methods: We tested whether polymorphisms in XRCC1 and OGG1 are associated with bladder cancer risk by using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) assay. In addition, the possible modifying affect of cigarette smoking was evaluated. Results: No studies, to date, have examined the association between genetic polymorphisms in DNA repair genes and bladder cancer susceptibility, in the Turkish population. We found the OGG1 Cys326Cys genotype to be more frequent among bladder cancer patients (odds ratio (OR): 2.41 (95% CI, 1.36-4.25)). However, in the case of XRCC1, there was no significant difference in susceptibility to bladder cancer development between patients with the Arg399 and these with the Gln399 allele (OR: 0.72 (95% CI, 0.41-1.26)). Conclusion: Our data showed that OGG1 genetic polymorphisms might be useful as prognostic genetic markers for bladder cancer in the clinical setting.Item Open Access Human MLH1 deficiency predisposes to hematological malignancy and neurofibromatosis type 1(American Association for Cancer Research, 1999) Ricciardone, M. D.; Özçelik, T.; Cevher, B.; Özdaǧ, H.; Tuncer, M.; Gürgey, A.; Uzunalimoǧlu, O.; Çetinkaya, H.; Tanyeli, A.; Erken, E.; Öztürk, M.Heterozygous germ-line mutations in the DNA mismatch repair genes lead to hereditary nonpolyposis colorectal cancer. The disease susceptibility of individuals who constitutionally lack both wild-type alleles is unknown. We have identified three offspring in a hereditary nonpolyposis colorectal cancer family who developed hematological malignancy at a very early age, and at least two of them displayed signs of neurofibromatosis type 1 (NF1). DNA sequence analysis and allele-specific amplification in two siblings revealed a homozygous MLH1 mutation (C676T → Arg226Stop). Thus, a homozygous germ- line MLH1 mutation and consequent mismatch repair deficiency results in a mutator phenotype characterized by leukemia and/or lymphoma associated with neurofibromatosis type 1.Item Open Access MicroRNA expression patterns in canine mammary cancer show significant differences between metastatic and non-metastatic tumours(BioMed Central Ltd., 2017) Bulkowska, M.; Rybicka, A.; Senses, K. M.; Ulewicz, K.; Witt, K.; Szymanska, J.; Taciak, B.; Klopfleisch, R.; Hellmén, E.; Dolka, I.; Gure, A. O.; Mucha, J.; Mikow, M.; Gizinski, S.; Krol, M.Background: MicroRNAs may act as oncogenes or tumour suppressor genes, which make these small molecules potential diagnostic/prognostic factors and targets for anticancer therapies. Several common oncogenic microRNAs have been found for canine mammary cancer and human breast cancer. On account of this, large-scale profiling of microRNA expression in canine mammary cancer seems to be important for both dogs and humans. Methods: Expression profiles of 317 microRNAs in 146 canine mammary tumours of different histological type, malignancy grade and clinical history (presence/absence of metastases) and in 25 control samples were evaluated. The profiling was performed using microarrays. Significance Analysis of Microarrays test was applied in the analysis of microarray data (both unsupervised and supervised data analyses were performed). Validation of the obtained results was performed using real-time qPCR. Subsequently, predicted targets for the microRNAs were searched for in miRBase. Results: Results of the unsupervised analysis indicate that the primary factor separating the samples is the metastasis status. Predicted targets for microRNAs differentially expressed in the metastatic vs. non-metastatic group are mostly engaged in cell cycle regulation, cell differentiation and DNA-damage repair. On the other hand, the supervised analysis reveals clusters of differentially expressed microRNAs unique for the tumour type, malignancy grade and metastasis factor. Conclusions: The most significant difference in microRNA expression was observed between the metastatic and non-metastatic group, which suggests a more important role of microRNAs in the metastasis process than in the malignant transformation. Moreover, the differentially expressed microRNAs constitute potential metastasis markers. However, validation of cfa-miR-144, cfa-miR-32 and cfa-miR-374a levels in blood samples did not follow changes observed in the non-metastatic and metastatic tumours.Item Open Access Saccharomyces cerevisiae C1D is implicated in both non-homologous DNA end joining and homologous recombination(Blackwell Publishing Ltd, 2002) Erdemir, T.; Bilican, B.; Cagatay, T.; Goding, C. R.; Yavuzer, U.C1D is a gamma-irradiation inducible nuclear matrix protein that interacts with and activates the DNA-dependent protein kinase (DNA-PK) that is essential for the repair of the DNA double-strand breaks and V(D)J recombination. Recently, it was demonstrated that C1D can also interact with TRAX and prevent the association of TRAX with Translin, a factor known to bind DNA break-point junctions, and that over expression of C1D can induce p53-dependent apoptosis. Taken together, these findings suggest that mammalian C1D could be involved in maintenance of genome integrity by regulating the activity of proteins involved in DNA repair and recombination. To obtain direct evidence for the biological function of C1D that we show is highly conserved between diverse species, we have analysed the Saccharomyces cerevisiae C1D homologue. We report that the disruption of the YC1D gene results in a temperature sensitivity and that yc1d mutant strains exhibit defects in non-homologous DNA end joining (NHEJ) and accurate DNA repair. In addition, using a novel plasmid-based in vivo recombination assay, we show that yc1d mutant strains are also defective in homologous recombination. These results indicate that YC1D is implicated in both homologous recombination and NHEJ pathways for the repair of DNA double-strand breaks.