Browsing by Subject "DNA damage"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Cancer testis gene expression as a biomarker of one-carbon metabolic activity, drug sensitivity and phenotypic heterogeneity in non-small cell lung cancer and malignant melanoma(2016-09) Şenses, Kerem MertExpression of cancer-testis (CT) genes on X chromosome (CT-X) is restricted to tumors, with very low or no expression in normal adult tissues. CT-X gene expression is one of the factors contributing to tumor heterogeneity and is variably observed in various types of cancers including non-small cell lung cancer (NSCLC) and malignant melanoma. Regulation of CT-X gene expression has been strongly linked to DNA methylation of promoter regions, however, mechanisms leading to re-expression of these genes in tumors, driven by promoter hypomethylation, is remained unsolved. Although tumors expressing CT-X genes are shown to be associated with higher tumor stage, larger tumors and aggressiveness, differential drug sensitivity of CT-X positive and negative tumors have not been investigated. In this thesis, we aimed to find the association between one-carbon pathway polymorphisms and CT-X gene expression. Moreover, we tested various tools and methods to find effective drugs for tumors in different phenotypic subgroups determined by CT-X gene expression or by other factors.Item Open Access Differential p21 expression after ionizing and UVC radiation in EBV-transformed lymphoblastoid cells(2000) Moyret-Lalle, C.; Lalle P.; Pedeux, R.; Guillot, C.; Martel, S.; Magaud J.-P.; Puisieux, A.; Ozturk, M.Responses to DNA-damaging agents appear to be coordinated by p53 through transcriptional activation of critical target genes. Among them, p21WAF1 encodes a protein preventing cells from entering S phase. It is not clear whether p53-mediated response varies depending on the type of DNA damage. Here, we have decided to compare the p53-mediated response of EBV-transformed lymphoblasts to ionizing radiation and UVC irradiation. We have shown that these cells respond to ionizing radiation by a cell cycle arrest as expected. Surprisingly they failed to do so after UVC treatment. Accordingly there was no significant induction of p21 protein in UVC exposed cells despite p53 accumulation. Using isogenic EBV-transformed lymphoblastoid cells expressing E6 protein of HPV18, we have demonstrated that there was no evidence of p53-dependent cell cycle arrest after UVC irradiation. These observations suggest that the p53-mediated response to UVC, in contrast to ionizing radiation, was compromised in EBV-transformed cells and might be cell type-dependent.Item Open Access p53 mutations as fingerprints of environmental carcinogens(2000) Cetin-Atalay, R.; Ozturk, M.Mutations of the p53 tumor suppressor gene occur in a great majority of human cancers. The protein product of p53 gene is involved in DNA damage response. Consequently, p53 gene may be a preferred target for environmental carcinogens, which also act as DNA-damaging agents. This is probably why p53 mutations are frequent in cancers linked to environmental carcinogens. Moreover, these carcinogens leave molecular fingerprints on the p53 gene. Thus, the study of p53 mutation spectra has been a useful approach to implicate suspected carcinogens to different human cancers. This review provides further insight into the significance of p53 mutation spectra in ten common human malignancies (skin, liver, lung, bladder, breast, head and neck, esophagus, stomach and colorectal cancers, and hematological malignancies), in relation with environmental carcinogens.Item Open Access PATZ1 is a DNA damage-responsive transcription factor that inhibits p53 function(American Society for Microbiology, 2015) Keskin, N.; Deniz, E.; Eryilmaz J.; Un, M.; Batur, T.; Ersahin, T.; Atalay, R.C.; Sakaguchi, S.; Ellmeier W.; Erman, B.Insults to cellular health cause p53 protein accumulation, and loss of p53 function leads to tumorigenesis. Thus, p53 has to be tightly controlled. Here we report that the BTB/POZ domain transcription factor PATZ1 (MAZR), previously known for its transcriptional suppressor functions in T lymphocytes, is a crucial regulator of p53. The novel role of PATZ1 as an inhibitor of the p53 protein marks its gene as a proto-oncogene. PATZ1-deficient cells have reduced proliferative capacity, which we assessed by transcriptome sequencing (RNA-Seq) and real-time cell growth rate analysis. PATZ1 modifies the expression of p53 target genes associated with cell proliferation gene ontology terms. Moreover, PATZ1 regulates several genes involved in cellular adhesion and morphogenesis. Significantly, treatment with the DNA damage-inducing drug doxorubicin results in the loss of the PATZ1 transcription factor as p53 accumulates. We find that PATZ1 binds to p53 and inhibits p53-dependent transcription activation. We examine the mechanism of this functional inhibitory interaction and demonstrate that PATZ1 excludes p53 from DNA binding. This study documents PATZ1 as a novel player in the p53 pathway. © 2015, American Society for Microbiology.