Browsing by Subject "Cylindrically stratified media"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Analysis of cylindrically conformal antennas using closed-form Green's function representations(IEEE, 2015-04) Kalfa, Mert; Karan, S.; Ertürk, Vakur B.Probe-fed microstrip patch antennas and slotted sectoral waveguide array antennas embedded in cylindrically stratified media are analyzed with a hybrid Method of Moments/Green's function technique, where closed-form Green's function representations for electric and magnetic current sources are used as the kernel of the associated integral equations. Various patch and slot antennas are analyzed using the proposed method. Numerical results in the form of input impedance, S-parameters, and radiation patterns are presented and compared to the results obtained from CST Microwave Studio™ and HFSS™.Item Open Access Design and analysis of slotted sectoral waveguide array antennas embedded in cylindrically stratified media(IEEE, 2014-07) Kalfa, Mert; Ertürk Vakur B.Slotted waveguide antennas are being widely used in military and commercial applications for many decades. Low cross-polarization, high power capacity, ease of fabrication in microwave bands, and the ability to form arrays make them excellent candidates for phased array antennas in radar applications. However, due to slots being highly resonant (narrow-band, high Q) radiators, their design parameters are very sensitive; hence, accurate design and analysis methods are required for a successful antenna design. Moreover, slotted waveguide array antennas are low-profile structures, which makes them suitable candidates for conformal and structure-integrated applications. Conformal and structure-integrated system solutions are especially required for air platforms, where aerodynamics, radar cross-section (RCS) and efficient use of real estate are of utmost importance. Although the accurate and efficient design and analysis of low-profile conformal slotted waveguide arrays are of great interest, available solution methods in the literature usually suffer in terms of efficiency and memory requirements. Among the available solution methods, one of the widely used solvers are integral equation (IE) based ones that utilize the method of moments (MoM). However, IE solvers suffer from long matrix fill times, especially for matrix entries related to the cylindrically stratified media. © 2014 IEEE.Item Open Access Method of moments analysis of microstrip antennas in cylindrically stratified media using closed-form Green's functions(2012) Karan, ŞakirNumerical methods based on Method of Moments (MoM) have been widely used for the design and analysis of planar microstrip antennas/arrays and printed circuits for various applications for many years. On the other hand, although the design and analysis of similar antennas/arrays and printed circuits on cylindrical structures are of great interest for many military, civil and commercial applications, their MoM-based analysis suffers from the efficiency and accuracy problems related with the evaluation of the Green’s function representations which constitute the kernel of the regarding integral equations. In this dissertation, novel closed-form Green’s function (CFGF) representations for cylindrically stratified media, which can be used as the kernel of an electric field integral equation (EFIE) are developed. The developed CFGF representations are used in a hybrid MoM/Green’s function solution procedure. In the course of obtaining the CFGF representations, first the conventional spectral domain Green’s function representations are modified so that all the Hankel (Bessel) functions are written in the form of ratio with another Hankel (Bessel) function. Furthermore, Debye representations for the ratio terms are used when necessary in order to avoid the possible overflow and underflow problems. Acceleration techniques that are present in the literature are implemented to further increase the efficiency and accuracy of the summation and integration. Once the acceleration techniques are performed, the resultant expressions are transformed to the space domain in the form of discrete complex images (DCIM) with the aid of the generalized pencil of function (GPOF) method and the fi- nal CFGF expressions are obtained by performing the resultant space domain integrals analytically. The novel CFGF expressions are used in conjunction with MoM for the investigation of microstrip antennas on cylindrically stratified media. The singular terms in mutual impedance calculations are treated analytically. The probe-fed excitation is modeled by implementing an attachment mode that is consistent with the current modes that are used to expand the induced current on the patches. In the course of modeling the probe-fed excitation, the probe-related components of CFGF representations are also derived for the first time in the literature and MoM formulation is given in the presence of an attachment mode. Consequently, several microstrip antennas and two antenna arrays are investigated using a hybrid MoM/Green’s function technique that use the CFGF representations developed in this dissertation. Numerical results in the form of input impedance of microstrip antennas in the presence of several layers as well as the mutual coupling between two microstrip antennas are presented and compared with the available results in the literature and the results obtained from the CST Microwave Studio.Item Open Access A novel approach for the efficient computation of 1-D and 2-D summations(Institute of Electrical and Electronics Engineers Inc., 2016) Karabulut, E. P.; Ertürk, V. B.; Alatan, L.; Karan, S.; Alisan, B.; Aksun, M. I.A novel computational method is proposed to evaluate 1-D and 2-D summations and integrals which are relatively difficult to compute numerically. The method is based on applying a subspace algorithm to the samples of partial sums and approximating them in terms of complex exponentials. For a convergent summation, the residue of the exponential term with zero complex pole of this approximation corresponds to the result of the summation. Since the procedure requires the evaluation of relatively small number of terms, the computation time for the evaluation of the summation is reduced significantly. In addition, by using the proposed method, very accurate and convergent results are obtained for the summations which are not even absolutely convergent. The efficiency and accuracy of the method are verified by evaluating some challenging 1-D and 2-D summations and integrals. © 2016 IEEE.