Method of moments analysis of microstrip antennas in cylindrically stratified media using closed-form Green's functions

Date

2012

Editor(s)

Advisor

Ertürk, Vakur B.

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
6
views
12
downloads

Series

Abstract

Numerical methods based on Method of Moments (MoM) have been widely used for the design and analysis of planar microstrip antennas/arrays and printed circuits for various applications for many years. On the other hand, although the design and analysis of similar antennas/arrays and printed circuits on cylindrical structures are of great interest for many military, civil and commercial applications, their MoM-based analysis suffers from the efficiency and accuracy problems related with the evaluation of the Green’s function representations which constitute the kernel of the regarding integral equations. In this dissertation, novel closed-form Green’s function (CFGF) representations for cylindrically stratified media, which can be used as the kernel of an electric field integral equation (EFIE) are developed. The developed CFGF representations are used in a hybrid MoM/Green’s function solution procedure. In the course of obtaining the CFGF representations, first the conventional spectral domain Green’s function representations are modified so that all the Hankel (Bessel) functions are written in the form of ratio with another Hankel (Bessel) function. Furthermore, Debye representations for the ratio terms are used when necessary in order to avoid the possible overflow and underflow problems. Acceleration techniques that are present in the literature are implemented to further increase the efficiency and accuracy of the summation and integration. Once the acceleration techniques are performed, the resultant expressions are transformed to the space domain in the form of discrete complex images (DCIM) with the aid of the generalized pencil of function (GPOF) method and the fi- nal CFGF expressions are obtained by performing the resultant space domain integrals analytically. The novel CFGF expressions are used in conjunction with MoM for the investigation of microstrip antennas on cylindrically stratified media. The singular terms in mutual impedance calculations are treated analytically. The probe-fed excitation is modeled by implementing an attachment mode that is consistent with the current modes that are used to expand the induced current on the patches. In the course of modeling the probe-fed excitation, the probe-related components of CFGF representations are also derived for the first time in the literature and MoM formulation is given in the presence of an attachment mode. Consequently, several microstrip antennas and two antenna arrays are investigated using a hybrid MoM/Green’s function technique that use the CFGF representations developed in this dissertation. Numerical results in the form of input impedance of microstrip antennas in the presence of several layers as well as the mutual coupling between two microstrip antennas are presented and compared with the available results in the literature and the results obtained from the CST Microwave Studio.

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)