Browsing by Subject "Compound semiconductors"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Plasmonic gratings for enhanced near infrared sensitivity of Silicon based Schottky photodetectors(IEEE, 2011) Polat, Kazım Gürkan; Aygun, Levent Erdal; Okyay, Ali KemalSchottky photodetectors have been intensively investigated due to their high speeds, low device capacitances, and sensitivity in telecommunication standard bands, in the 0.8μm to 1.5μm wavelength range. Due to extreme cost advantage of Silicon over compound semiconductors, and seamless integration with VLSI circuits, metal-Silicon Schottky photodetectors are attractive low cost alternatives to InGaAs technology. However, efficiencies of Schottky type photodetectors are limited due to thin absorption region. Previous efforts such as resonant cavities increase the sensitivity using optical techniques, however their integration with VLSI circuits is difficult. Therefore, there is a need for increasing Schottky detector sensitivity, in a VLSI compatible fashion. To address this problem, we design plasmonic grating structures to increase light absorption at the metal-Silicon Schottky interface. There are earlier reports of plasmonic structures to increase Schottky photodetector sensitivity, with a renowned interest in the utilization of plasmonic effects to improve the absorption characteristics of metal-semiconductor interfaces. In this work, we report the design, fabrication and characterization of Gold-Silicon Schottky photodetectors with enhanced absorption in the near infrared region. © 2011 IEEE.Item Open Access Variable temperature-scanning Hall probe microscopy with GaN/AlGaN two-dimensional electron gas (2DEG) micro Hall sensors in 4.2-425 K range using novel quartz tuning fork AFM feedback(IEEE, 2008) Akram, Rizwan; Dede, Münir; Oral, AhmetIn this paper, we present the fabrication and variable temperature (VT) operation of Hall sensors, based on GaN/AlGaN heterostructure with a two-dimensional electron gas (2DEG) as an active layer, integrated with quartz tuning fork (QTF) in atomic force-guided (AFM) scanning Hall probe microscopy (SHPM). Physical strength and a wide bandgap of GaN/AlGaN heterostructure makes it a better choice to be used for SHPM at elevated temperatures, compared to other compound semiconductors (AlGaAs/GaAs and InSb), which are unstable due to their narrower bandgap and physical degradation at high temperatures. GaN/AlGaN micro Hall probes were produced using optical lithography and reactive ion etching. The active area, Hall coefficient, carrier concentration, and series resistance of the Hall sensors were ∼1 × 1 μm, 10 mΩ/G at 4.2 K, 6.3 × 10 12 cm -2 and 12 kΩ at room temperature and 7 mΩ/G, 8.9 × 10 12 cm -2 and 24 kΩ at 400 K, respectively. A novel method of AFM feedback using QTF has been adopted. This method provides an advantage over scanning tunneling-guided feedback, which limits the operation of SHPM the conductive samples and failure of feedback due to high leakage currents at high temperatures. Simultaneous scans of magnetic and topographic data at various pressures (from atmospheric pressure to high vacuum) from 4. to 425K will be presented for different samples to illustrate the capability of GaN/AlGaN Hall sensors in VT-SHPM.