Browsing by Subject "Coercive force"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access 50 nm Hall Sensors for Room Temperature Scanning Hall Probe Microscopy(Institute of Physics Publishing, 2004) Sandhu, A.; Kurosawa, K.; Dede, M.; Oral, A.Bismuth nano-Hall sensors with dimensions ∼50nm × 50 nm were fabricated using a combination of optical lithography and focused ion beam milling. The Hall coefficient, series resistance and optimum magnetic field sensitivity of the sensors were 4 × 10-4 Ω/G, 9.1kΩ and 0.8G/√Hz, respectively. A 50nm nano-Bi Hall sensor was installed into a room temperature scanning Hall probe microscope and successfully used for directly imaging ferromagnetic domains of low coercivity garnet thin films.Item Open Access Bismuth nano-Hall probes fabricated by focused ion beam milling for direct magnetic imaging by room temperature scanning Hall probe microscopy(The Institution of Engineering and Technology (IET), 2001) Sandhu, A.; Masuda, H.; Kurosawa, K.; Oral, A.; Bending, S. J.Bismuth nano-Hall probes fabricated by using focused ion beam (FIB) milling were studied. The nano-Hall probes were used for direct magnetic imaging of domain structures in low coercivity garnets and demagnetized strontium ferrite permanent magnets. The analysis was performed using room temperature scanning Hall probe microscopy and it was found that the Bi nano-probes could overcome limitations due to surface depletion and large series resistances.Item Open Access Direct magnetic imaging of ferromagnetic domain structures by room temperature scanning hall probe microscopy using a bismuth micro-Hall probe(Japan Society of Applied Physics, 2001) Sandhu, A.; Masuda, H.; Oral, A.; Bending, S. J.A bismuth micro-Hall probe sensor with an integrated scanning tunnelling microscope tip was incorporated into a room temperature scanning Hall probe microscope system and successfully used for the direct magnetic imaging of microscopic domains of low coercivity perpendicular garnet thin films and demagnetized strontium ferrite permanent magnets. At a driving current of 800 μA, the Hall coefficient, magnetic field sensitivity and spatial resolution of the Bi probe were 3.3 × 10-4 Ω/G, 0.38 G/√Hz and ∼ 2.8 μm, respectively. The room temperature magnetic field sensitivity of the Bi probe was comparable to that of a semiconducting 1.2μm GaAs/AlGaAs heterostructure micro-Hall probe, which exhibited a value of 0.41 G/√Hz at a maximum driving current of 2μA.