Browsing by Subject "Close proximity"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Dynamic tuning of plasmon resonance in the visible using graphene(The Optical Society, 2016) Balci, S.; Balci, O.; Kakenov, N.; Atar, F. B.; Kocabas, C.We report active electrical tuning of plasmon resonance of silver nanoprisms (Ag NPs) in the visible spectrum. Ag NPs are placed in close proximity to graphene which leads to additional tunable loss for the plasmon resonance. The ionic gating of graphene modifies its Fermi level from 0.2 to 1 eV, which then affects the absorption of graphene due to Pauli blocking. Plasmon resonance frequency and linewidth of Ag NPs can be reversibly shifted by 20 and 35 meV, respectively. The coupled graphene-Ag NPs system can be classically described by a damped harmonic oscillator model. Atomic layer deposition allows for controlling the graphene-Ag NP separation with atomic-level precision to optimize coupling between them.Item Open Access Emergency crowd simulation for outdoor environments(Pergamon Press, 2010) Oğuz, O.; Akaydın, A.; Yilmaz, T.; Güdükbay, UğurWe simulate virtual crowds in emergency situations caused by an incident, such as a fire, an explosion, or a terrorist attack. We use a continuum dynamics-based approach to simulate the escaping crowd, which produces more efficient simulations than the agent-based approaches. Only the close proximity of the incident region, which includes the crowd affected by the incident, is simulated. We use a model-based rendering approach where a polygonal mesh is rendered for each agent according to the agent's skeletal motion. To speed up the animation and visualization, we employ an offline occlusion culling technique. We animate and render a pedestrian model only if it is visible according to the static visibility information computed. In the pre-processing stage, the navigable area is decomposed into a grid of cells and the from-region visibility of these cells is computed with the help of hardware occlusion queries. © 2009 Elsevier Ltd. All rights reserved.Item Open Access Plasmon-Exciton Resonant Energy Transfer: Across Scales Hybrid Systems(Hindawi Publishing Corporation, 2016) El Kabbash, M.; Rashed, A. R.; Sreekanth, K. V.; De Luca, A.; Infusino, M.; Strangi, G.The presence of an excitonic element in close proximity of a plasmonic nanostructure, under certain conditions, may lead to a nonradiative resonant energy transfer known as Exciton Plasmon Resonant Energy Transfer (EPRET) process. The exciton-plasmon coupling and dynamics have been intensely studied in the last decade; still many relevant aspects need more in-depth studies. Understanding such phenomenon is not only important from fundamental viewpoint, but also essential to unlock many promising applications. In this review we investigate the plasmon-exciton resonant energy transfer in different hybrid systems at the nano- and mesoscales, in order to gain further understanding of such processes across scales and pave the way towards active plasmonic devices.Item Open Access White light generating nonradiative energy transfer directly from epitaxial quantum wells to colloidal nanocrystal quantum dots(Optical Society of America, 2009) Nizamoğlu, Sedat; Sarı, Emre; Baek J.-H.; Lee I.-H.; Demir, Hilmi VolkanWe present white light generating nonradiative Förster resonance energy transfer at a rate of (2ns)-1 directly from epitaxial InGaN/GaN quantum wells to CdSe/ZnS heteronanocrystals in their close proximity at chromaticity-coordinates (x,y)=(0.42,0.39) and correlated-color-temperature CCT=3135K. ©2009 Optical Society of America.