Browsing by Subject "Chitosan nanoparticles"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access 3D printed microfluidic reactor for high throuhput chitosan nanoparticle synthesis(Chemical and Biological Microsystems Society, 2016) Aşık, M. D.; Çetin, Barbaros; Kaplan, M.; Erdem, Yegan; Saǧlam, N.The major bottleneck for the commercialization of nanoparticle related technologies is the mass production of the nanoparticles. One approach to overcome this bottleneck is use of microfluidic devices. In this paper, a 3D printed, high throughput micro-reactor that is capable of synthesizing both chitosan and chitosan coated iron oxide nanoparticles is presented.Item Open Access Microfluidic device for synthesis of chitosan nanoparticles(ASME, 2013) Çetin, Barbaros; Taze, Serdar; Asik, M.D.; Tuncel, S.A.Chitosan nanoparticles have a biodegradable, biocompatible, non-toxic structure, and commonly used for drug delivery systems. In this paper, simulation of a microfluidic device for the synthesis of chitosan nanoparticle is presented. The flow filed together with the concentration field within the microchannel network is simulated using COMSOL Multiphysics® simulation environment. Different microchannel geometries are analyzed, and the mixing performance of these configurations are compared. As a result, a 3D design for a microfluidics platform which includes four channel each of which performs the synthesis in parallel is proposed. Future research directions regarding the fabrication of the microfluidic device and experimentation phase are addressed and discussed. Copyright © 2013 by ASME.Item Open Access Synthesis of iron oxide core chitosan nanoparticles in a 3D printed microfluidic device(Springer, 2021-03-02) Aşık, M.D.; Kaplan, M.; Çetin, Barbaros; Sağlam, N.Nanostructures are capable of major changes in our life. However, the game changing properties of experimental nanostructures mostly are not repeatable for the industry and it is not easy to produce the amount of nanoparticles necessary for the industrial world. Repeatable methods, which do not require highly trained personnel, for industrial-scale production should be developed to transfer the academic research to the use of people. Although there are various successful microfluidics devices that have been designed for microstructures synthesis, the synthesis of the nanostructures is not an enlightened area and there is a need for research to reach a better state. Especially, the development and design of microfluidics devices for biopolymeric nanoparticles are very important. The biopolymeric nanoparticles have uses in both nanotechnology and nanomedicine especially as theragnostic tools. In this study, a microfluidic device has been modeled, designed, and manufactured for especially iron oxide core chitosan nanoparticles. The microfluidics channels were manufactured by 3D printing. After nanoparticles synthesized by manufactured device, these particles were characterized, and their properties were examined. In addition to the flow rate, chemical concentrations, and pH, the structure of the microfluidics channel and hurdles have effects on the particle size and particle size distribution. Best results were obtained with 120-120ml/h flow rates and 0.06-0.03% concentrations at pH 4.5 for chitosan-tripolyphosphate couple. The nanoparticles that were produced in microchannels with hurdles under these conditions have a DLS measurement of 190±15 nm in diameter with 69% intensity. In conclusion, the 3D printed microfluidic channels are able to synthesize nanoparticles in a reproducible way with or without iron oxide core.