Browsing by Subject "Canonical polyadic decomposition"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Improving medium-grain partitioning for scalable sparse tensor decomposition(Institute of Electrical and Electronics Engineers, 2018) Acer, S.; Torun, T.; Aykanat, CevdetTensor decomposition is widely used in the analysis of multi-dimensional data. The canonical polyadic decomposition (CPD) is one of the most popular decomposition methods and commonly found by the CPD-ALS algorithm. High computational and memory costs of CPD-ALS necessitate the use of a distributed-memory-parallel algorithm for efficiency. The medium-grain CPD-ALS algorithm, which adopts multi-dimensional cartesian tensor partitioning, is one of the most successful distributed CPD-ALS algorithms for sparse tensors. This is because cartesian partitioning imposes nice upper bounds on communication overheads. However, this model does not utilize the sparsity pattern of the tensor to reduce the total communication volume. The objective of this work is to fill this literature gap. We propose a novel hypergraph-partitioning model, CartHP, whose partitioning objective correctly encapsulates the minimization of total communication volume of multi-dimensional cartesian tensor partitioning. Experiments on twelve real-world tensors using up to 1024 processors validate the effectiveness of the proposed CartHP model. Compared to the baseline medium-grain model, CartHP achieves average reductions of 52, 43 and 24 percent in total communication volume, communication time and overall runtime of CPD-ALS, respectively.Item Open Access Partitioning models for general medium-grain parallel sparse tensor decomposition(IEEE, 2021) Karsavuran, M. Ozan; Acer, S.; Aykanat, CevdetThe focus of this article is efficient parallelization of the canonical polyadic decomposition algorithm utilizing the alternating least squares method for sparse tensors on distributed-memory architectures. We propose a hypergraph model for general medium-grain partitioning which does not enforce any topological constraint on the partitioning. The proposed model is based on splitting the given tensor into nonzero-disjoint component tensors. Then a mode-dependent coarse-grain hypergraph is constructed for each component tensor. A net amalgamation operation is proposed to form a composite medium-grain hypergraph from these mode-dependent coarse-grain hypergraphs to correctly encapsulate the minimization of the communication volume. We propose a heuristic which splits the nonzeros of dense slices to obtain sparse slices in component tensors. So we partially attain slice coherency at (sub)slice level since partitioning is performed on (sub)slices instead of individual nonzeros. We also utilize the well-known recursive-bipartitioning framework to improve the quality of the splitting heuristic. Finally, we propose a medium-grain tripartite graph model with the aim of a faster partitioning at the expense of increasing the total communication volume. Parallel experiments conducted on 10 real-world tensors on up to 1024 processors confirm the validity of the proposed hypergraph and graph models.Item Open Access Scalable unsupervised ML: Latency hiding in distributed sparse tensor decomposition(IEEE Computer Society, 2022-11-01) Abubaker, Nabil; Karsavuran, M. Ozan; Aykanat, CevdetLatency overhead in distributed-memory parallel CPD-ALS scales with the number of processors, limiting the scalability of computing CPD of large irregularly sparse tensors. This overhead comes in the form of sparse reduce and expand operations performed on factor-matrix rows via point-to-point messages. We propose to hide the latency overhead through embedding all of the point-to-point messages incurred by the sparse reduce and expand into dense collective operations which already exist in the CPD-ALS. The conventional parallel CPD-ALS algorithm is not amenable for embedding so we propose a computation/communication rearrangement to enable the embedding. We embed the sparse expand and reduce into a hypercube-based ALL-REDUCE operation to limit the latency overhead to Oðlog 2KÞ for a K-processor system. The embedding comes with the cost of increased bandwidth overhead due to the multi-hop routing of factor-matrix rows during the embedded-ALL-REDUCE. We propose an embedding scheme that takes advantage of the expand/reduce properties to reduce this overhead. Furthermore, we propose a novel recursive bipartitioning framework that enables simultaneous hypergraph partitioning and subhypergraph-to-subhypercube mapping to achieve subtensor-to-processor assignment with the objective of reducing the bandwidth overhead during the embedded-ALL-REDUCE. We also propose a bin-packing-based algorithm for factor-matrix row to processor assignment aiming at reducing processors’ maximum send and receive volumes during the embedded-ALL-REDUCE. Experiments on up to 4096 processors show that the proposed framework scales significantly better than the state-of-the-art point-to-point method.