Partitioning models for general medium-grain parallel sparse tensor decomposition

Date

2021

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Parallel and Distributed Systems

Print ISSN

1045-9219

Electronic ISSN

1558-2183

Publisher

IEEE

Volume

32

Issue

1

Pages

147 - 159

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
3
views
28
downloads

Series

Abstract

The focus of this article is efficient parallelization of the canonical polyadic decomposition algorithm utilizing the alternating least squares method for sparse tensors on distributed-memory architectures. We propose a hypergraph model for general medium-grain partitioning which does not enforce any topological constraint on the partitioning. The proposed model is based on splitting the given tensor into nonzero-disjoint component tensors. Then a mode-dependent coarse-grain hypergraph is constructed for each component tensor. A net amalgamation operation is proposed to form a composite medium-grain hypergraph from these mode-dependent coarse-grain hypergraphs to correctly encapsulate the minimization of the communication volume. We propose a heuristic which splits the nonzeros of dense slices to obtain sparse slices in component tensors. So we partially attain slice coherency at (sub)slice level since partitioning is performed on (sub)slices instead of individual nonzeros. We also utilize the well-known recursive-bipartitioning framework to improve the quality of the splitting heuristic. Finally, we propose a medium-grain tripartite graph model with the aim of a faster partitioning at the expense of increasing the total communication volume. Parallel experiments conducted on 10 real-world tensors on up to 1024 processors confirm the validity of the proposed hypergraph and graph models.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)