Browsing by Subject "Cancer immunotherapy"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Antigenic GM3 lactone mimetic molecule integrated mannosylated glycopeptide nanofibers for the activation and maturation of dendritic cells(American Chemical Society, 2017) Gunay, Gokhan; Ekiz, Melis Sardan; Ferhati, X.; Richichi, B.; Nativi, C.; Tekinay, Ayse B.; Güler, Mustafa O.The ability of dendritic cells to coordinate innate and adaptive immune responses makes them essential targets for vaccination strategies. Presentation of specific antigens by dendritic cells is required for the activation of the immune system against many pathogens and tumors, and nanoscale materials can be functionalized for active targeting of dendritic cells. In this work, we integrated an immunogenic, carbohydrate melanoma-associated antigen-mimetic GM3-lactone molecule into mannosylated peptide amphiphile nanofibers to target dendritic cells through DC-SIGN receptor. Based on morphological and functional analyses, when dendritic cells were treated with peptide nanofiber carriers, they showed significant increase in antigen internalization and a corresponding increase in the surface expression of the activation and maturation markers CD86, CD83 and HLA-DR, in addition to exhibiting a general morphology consistent with dendritic cell maturation. These results indicate that mannosylated peptide amphiphile nanofiber carriers are promising candidates to target dendritic cells for antigen delivery. © 2017 American Chemical Society.Item Open Access Dual-adjuvant effect of pH-sensitive liposomes loaded with STING and TLR9 agonists regress tumor development by enhancing Th1 immune response(Elsevier, 2020) Bayyurt-Kocabaş, Banu; Almacıoğlu, Kübra; Alpdundar-Bulut, E.; Güçlüler, Gözde; Tincer, Gizem; Bayık, D.; Gürsel, M.; Gürsel, İhsanNucleic acid-based pattern recognition receptor agonists are effective adjuvants and immunotherapeutic agents. Rather than single applications, ligand combinations could synergistically potentiate immune responses by elevating cytokine and chemokine production via triggering multiple signaling pathways. However, short half-lives of such labile ligands due to nuclease attack and limited cellular uptake due to their structure significantly hamper their in vivo performances. More importantly, simultaneous delivery and activity presentation of protein antigen and nucleic acid ligands critically limit the clinical development of these constructs. In this work, we approached this problem by co-encapsulating a model antigen ovalbumin along with TLR9 and STING ligands within liposomes, a well-established drug delivery system that enables payload stability and enhanced cellular activity upon internalization. Moreover, by loading dual ligands we postulated to achieve heightened Th-1 immune response that would yield pronounced protective vaccine efficacy. We show that, pH-sensitive liposomes co-encapsulating CpG ODN and cGAMP induced synergistic innate immune response by elevating type I and type II interferon levels. Most importantly, this vaccine formulation led to ~70% regression of established melanoma tumor. pH-sensitive liposomal vaccine administration elevated IgG2c/IgG1 antibody ratio, indicative of augmented OVA-specific Th1-biased immunity. Importantly, while the frequency of tumor-specific IFN-γ producing CD8+ T-cells was significantly increased, the M2-type anti-inflammatory macrophage levels were decreased in the tumor bed. In conclusion, our strategy induces reversal of immunosuppressive tumor microenvironment, while enhancing effective anti-tumor immune-response. We propose that this could be coupled with standard therapies during combating tumor eradication.Item Open Access Eliciting immune response by using nanostructures(2017-06) Günay, GökhanThe ability of dendritic cells to coordinate innate and adaptive immune responses makes them essential targets for vaccination strategies. Presentation of specific antigens by dendritic cells is required for the activation of the immune system against many pathogens and cancer, and nanoscale materials can be functionalized for active targeting of dendritic cells. In this work, we integrated an immunogenic, carbohydrate melanoma-associated antigen-mimetic GM3-lactone molecule into mannosylated peptide amphiphile nanofibers to target dendritic cells through DC-SIGN receptor. Based on morphological and functional analyses, when dendritic cells were treated with peptide nanofiber carriers, they showed significant increase in antigen internalization and a corresponding increase in the surface expression of the activation and maturation markers CD86, CD83 and HLA-DR, in addition to exhibiting a general morphology consistent with dendritic cell maturation. These results indicate that mannosylated peptide amphiphile nanofiber carriers are promising candidates to target dendritic cells for antigen delivery. Overall these structures are proven to be effective in terms of dendritic cell activation and maturation and hold high potential to be used with a variety of antigens for different immunotherapy purposes.Item Open Access In vivo applications of liposomal vaccines encapsulating single or dual pathogenassociated molecular patterns(2017-03) Bayyurt Kocabaş, BanuNucleic acid-based pattern recognition receptor (PRR) agonists are promising adjuvants and immunotherapeutic agents. Combination of PRR ligands potentiates immune response by providing synergistic immune activity via triggering different signaling pathways and may impact antigen dependent T-cell immune memory. However, the duration of short circulation due to nuclease attacks is hampering their clinical performance. Liposomes enable protein and nucleic acid based compounds to have high encapsulation efficiency. Herein, we aimed to develop liposomal carrier systems that co-encapsulating single TLR9 or combinations with TLR3 or STING ligands and assess their potential as adjuvants and immunostimulatory agents in in vivo applications. Liposomal dual nucleic acid formulations induced synergistic innate immune activation, enhanced cytokine production along with internalization capacity of ligands. In anti-cancer vaccine study, CpG ODN and poly(I:C) coencapsulation significantly increased OVA-specific Th1-biased immune even after eight months post-booster injection. Challenge with OVA-expressing tumor cell line, E.G7, demonstrated that mice immunized with liposomes co-encapsulating CpG ODN and poly(I:C) had significantly slower tumor progression dependent on OVAspecific cytotoxic memory T-cells. In our second in vivo application, liposomal CDN and TLR9 therapy led to 80% remission of established melanoma tumor. Increased IgG2c/IgG1 ratio in mice treated with liposomal formulations indicating the development of antigen specific Th1-biased immunity was observed. Furthermore, along with the treatment, IFN-dual ligands into liposomes enhanced the anti-tumor activity of single ligands. In the third part, immunization with CpG ODN loaded liposomal formulations together with antigens increased antigen-specific humoral response against FMDV and Helicobacter. In addition, the liposomal CpG ODN reduced bacterial gastric colonization by antigen-dependent Th1 and Th17 immune responses after helicobacter challenging.