Browsing by Subject "Boundary controllers"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access On the stabilization and stability robustness against small delays of some damped wave equations(IEEE, 1995) Morgül, O.In this note we consider a system which can be modeled by two different one-dimensional damped wave equations in a bounded domain, both parameterized by a nonnegative damping constant. We assume that the system is fixed at one end and is controlled by a boundary controller at the other end. We consider two problems, namely the stabilization and the stability robustness of the closed-loop system against arbitrary small time delays in the feedback loop. We propose a class of dynamic boundary controllers and show that these controllers solve the stabilization problem when the damping coefficient is nonnegative and stability robustness problem when the damping coefficient is strictly positive.Item Open Access Robust stabilization of the wave equation against small delays(IEEE, 1994) Morgül, ÖmerIn this paper we consider a system which can be modeled by (undamped) wave equation in a bounded domain. We assume that the system is fixed at one end and is controlled by a boundary controller at the other end. We also considered two damped versions of this system, both parameterized by a nonnegative damping constant. We study two problems for these models, namely the stabilization by means of a boundary controller, and the stability robustness of the closed-loop system against small time delays in the feedback loop. We propose a class of finite dimensional dynamic boundary controllers to solve these problems. One basic feature of these controllers is that the corresponding controller transfer functions are required to be strictly positive real functions. We show that these controllers stabilize both damped and undamped models and solve the stability robustness problem for the damped models. It is also shown that while strict positive realness of the controller transfer functions is important for closed-loop stability, the strict properness is important for the stability robustness against small time delays in the feedback loop.