Robust stabilization of the wave equation against small delays
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
In this paper we consider a system which can be modeled by (undamped) wave equation in a bounded domain. We assume that the system is fixed at one end and is controlled by a boundary controller at the other end. We also considered two damped versions of this system, both parameterized by a nonnegative damping constant. We study two problems for these models, namely the stabilization by means of a boundary controller, and the stability robustness of the closed-loop system against small time delays in the feedback loop. We propose a class of finite dimensional dynamic boundary controllers to solve these problems. One basic feature of these controllers is that the corresponding controller transfer functions are required to be strictly positive real functions. We show that these controllers stabilize both damped and undamped models and solve the stability robustness problem for the damped models. It is also shown that while strict positive realness of the controller transfer functions is important for closed-loop stability, the strict properness is important for the stability robustness against small time delays in the feedback loop.