BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Bose-Einstein condensation"

Filter results by typing the first few letters
Now showing 1 - 12 of 12
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Ground-state properties and collective excitations in a 2D Bose-Einstein condensate with gravity-like interatomic attraction
    (Springer, 2008) Keleş, Ahmet; Sevinçli, Sevilay; Tanatar, Bilal
    We study the ground-state properties of a Bose-Einstein condensate (BEC) with the short-range repulsion and gravitylike 1/r interatomic attraction in two-dimensions (2D). Using the variational approach, we obtain the ground-state energy and show that the condensate is stable for all interaction strenghts in 2D. We also determine the collective excitations at zero temperature using the time-dependent variational method. We analyze the properties of the Thomas-Fermi-gravity (TF-G) and gravity (G) regimes.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Ground-state properties, vortices, and collective excitations in a two-dimensional Bose-Einstein condensate with gravitylike interatomic attraction
    (The American Physical Society, 2008) Keleş, A.; Sevinçli, S.; Tanatar, Bilal
    We study the ground-state properties of a Bose-Einstein condensate with short-range repulsion and gravitylike 1/r interatomic attraction in two-dimensions (2D). Using the variational approach we obtain the ground-state energy and analyze the stability of the condensate for a range of interaction strengths in 2D. We also determine the collective excitations at zero temperature using the time-dependent variational method. We analyze the properties of the Thomas-Fermi-gravity and gravity regimes, and we examine the vortex states, finding the coherence length and monopole mode frequency for these regimes. Our results are compared and contrasted with those in 3D condensates.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Low-temperature thermodynamics of finite and discrete quartic quantum oscillator in one dimension
    (1999) Sıddıki, Afif
    I.' this work we examined a quartic Hamiltonian using two different approaches. We first introduced a mean-field Gaussian approximation in order to handle this Hamiltonian analytically and observed that this approximation is insufficient for all coupling strengths. Hence we applied second and third order non-degenerate time-independent perturbation and obtained third or- ■ ler correcHo
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Photonic band gap in the triangular lattice of Bose-Einstein-condensate vortices
    (2007) Taşgin, M. E.; Müstecaplioǧlu Ö. E.; Oktel, M. Ö.
    We investigate the photonic bands of an atomic Bose-Einstein condensate with a triangular vortex lattice. Index contrast between the vortex cores and the bulk of the condensate is achieved through the enhancement of the index via atomic coherence. The frequency-dependent dielectric function is used in the calculations of the bands, resulting in photonic band gap widths of a few megahertz. © 2007 The American Physical Society.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Quantum correlated light pulses from sequential superradiance of a condensate
    (2009) Taşgin, M.E.; Oktel, M. Ö.; You L.; MüstecaplIoǧlu Ö.E.
    We discover an inherent mechanism for entanglement swap associated with sequential superradiance from an atomic Bose-Einstein condensate. Based on careful examinations with both analytical and numerical approaches, we conclude that as a result of the swap mechanism, Einstein-Podolsky-Rosen-type quantum correlations can be detected among the scattered light pulses. © 2009 The American Physical Society.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Quantum Dynamics of Long-Range Interacting Systems Using the Positive-P and Gauge-P Representations
    (American Physical Society, 2017) Wüster, S.; Corney, J. F.; Rost, J. M.; Deuar, P.
    We provide the necessary framework for carrying out stochastic positive-P and gauge-P simulations of bosonic systems with long-range interactions. In these approaches, the quantum evolution is sampled by trajectories in phase space, allowing calculation of correlations without truncation of the Hilbert space or other approximations to the quantum state. The main drawback is that the simulation time is limited by noise arising from interactions. We show that the long-range character of these interactions does not further increase the limitations of these methods, in contrast to the situation for alternatives such as the density matrix renormalization group. Furthermore, stochastic gauge techniques can also successfully extend simulation times in the long-range-interaction case, by making using of parameters that affect the noise properties of trajectories, without affecting physical observables. We derive essential results that significantly aid the use of these methods: estimates of the available simulation time, optimized stochastic gauges, a general form of the characteristic stochastic variance, and adaptations for very large systems. Testing the performance of particular drift and diffusion gauges for nonlocal interactions, we find that, for small to medium systems, drift gauges are beneficial, whereas for sufficiently large systems, it is optimal to use only a diffusion gauge. The methods are illustrated with direct numerical simulations of interaction quenches in extended Bose-Hubbard lattice systems and the excitation of Rydberg states in a Bose-Einstein condensate, also without the need for the typical frozen gas approximation. We demonstrate that gauges can indeed lengthen the useful simulation time.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Raman superradiance and spin lattice of ultracold atoms in optical cavities
    (IOP Institute of Physics Publishing, 2013) Safaei, S.; Müstecaplioǧlu, Ö. E.; Tanatar, Bilal
    We investigate the synthesis of a hyperfine spin lattice in an atomic Bose-Einstein condensate, with two hyperfine spin components, inside a one-dimensional high-finesse optical cavity, using off-resonant superradiant Raman scattering. Spatio-temporal evolution of the relative population of the hyperfine spin modes is examined numerically by solving the coupled cavity-condensate mean-field equations in the dispersive regime. We find, analytically and numerically, that beyond a certain threshold of the transverse laser pump, Raman superradiance and self-organization of the hyperfine spin components occur simultaneously and as a result a magnetic lattice is formed. The effects of an extra laser pump parallel to the cavity axis and the time dependence of the pump strength on the synthesis of a sharper lattice are also addressed.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Strongly interacting one-dimensional Bose condensates
    (2000) Erkan, Kamil
    Recent observation of Bose-Einstein condensation in dilute alkali gzises led to a great interest in this area both experimentally and theoretically. The most important characteristics of a Bose-Einstein condensate is that it consists of a large number of atoms occupying a single quantum state. This kind of a feature seen in photons led to the production of widely-used photon lasers. Coherent state of atoms may lead to the production of atom lasers in near future. The well-known Bogoliubov model to explain the nature of Bose-Einstein condensates of trapped dilute gases is valid when the interaction between particles is weak. However, as the number of atoms is increased, the interaction effects lead to a significant contribution in the system. Several attempts were made to improve the Bogoliubov model and to explain strongly interacting systems but these treatments are accurate up to a finite strength of the coupling . One-dimensional Bose systems is important because exact solution of the homogenous problem exists. Also it is a good testing ground to study interaction effects since only two-body interactions play role in these systems. Furthermore, experimental realization of one-dimensional systems are attracting a great deal of interest into the present problem. We investigate a somewhat different method to study the properties of strongly coupled Bose condensates in one-dimensional space. It uses the socalled Kohn-Sham theory to solve the problem by considering the exact solution of the homogenous one-dimensional Bose gas. The new approach reveals that interactions are expressed by a ■0^ term in the strongly coupled regime in contrast to a 0^ term in weak coupling regime. The model is applied to several types of trap potentials by performing a numerical minimization. We also improve the model for the case of a finite temperature. We observe that the system has a non-zero critical temperature which suggests a real phase transition in onedimensional space. In the last part, we work on the stability of a two-component condensate in a harmonic trap potential. We find that for a wide range of system parameters either a coexisting or a phase-segregated mixture can be obtained.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Two-dimensional boson-fermion mixtures in harmonic traps
    (Elsevier Science B.V., 2003) Tanatar, Bilal; Erdemir, E.
    The density profiles of bosonic and fermionic components in a system of trapped two-dimensional (2D) boson-fermion (BF) mixture are studied. We employ the variational approach to minimize the total energy functional of the BF mixture subject to the conservation of particle numbers of the species. We consider repulsive interactions between bosons and investigate the repulsive and attractive interactions between bosons and fermions. Our results are qualitatively similar to those in 3D, despite the fact that the structure of equations in 2D are different.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A variational approech to stationary and rotating Bose-Einstein condensates
    (2006) Keçeli, Murat
    After the experimental demonstration of Bose-Einstein condensation (BEC) in alkali gases [6, 7, 18], the number of theoretical and experimental papers on ultracold atomic physics increased enormously [48]. BEC experiments provide a way to manipulate quantum many-body systems, and measure their properties precisely. Although the theory of BEC is simpler compared to other many-body systems due to strong correlation, a fully analytical treatment is generally not possible. Therefore, variational methods, which give approximate analytical solutions, are widely used. With this motivation, in this thesis we study on BEC in stationary and rotating regimes using variational methods. All the atoms in the condensate can be described with a single wave function, and in the dilute regime this wave function satisfies a single nonlinear equation (the Gross-Pitaevskii equation) which resembles the nonlinear Schr¨odinger equation in nonlinear optics. A simple analytical ansatz, which has been used to describe the intensity profile of the similariton laser [41, 43] having a similar behavior in the limiting cases of nonlinearity with ground state density profile of BECs, is used as the trial wave function to solve the Gross-Pitaevskii equation with variational principle for a wide range of the interaction parameter. The simple form of the ansatz allowed us to modify it for both cylindrically symmetric and completely anisotropic harmonic traps. The resulting ground state wave function and energy are in very good agreement with the analytical solutions in the limiting cases of interaction and numerical solutions for the intermediate regime. In the second part, we consider a rapidly rotating two-component BoseEinstein condensate containing a vortex lattice. We calculate the dispersion relation for small oscillations of vortex positions (Tkachenko modes) in the mean-field quantum Hall regime, taking into account the coupling of these modes with density excitations. Using an analytic form for the density of the vortex lattice, we numerically calculate the elastic constants for different lattice geometries. We also apply this method to the calculation the elastic constant for the single-component triangular lattice. For a two-component BEC, there are two kinds of Tkachenko modes, which we call acoustic and optical in analogy with phonons. For all lattice types, acoustic Tkachenko mode frequencies have quadratic wave-number dependence at long-wavelengths, while the optical Tkachenko modes have linear dependence. For triangular lattices the dispersion of the Tkachenko modes are isotropic, while for other lattice types the dispersion relations show directional dependence consistent with the symmetry of the lattice. Depending on the intercomponent interaction there are five distinct lattice types, and four structural phase transitions between them. Two of these transitions are second-order and are accompanied by the softening of an acoustic Tkachenko mode. The remaining two transitions are first-order and while one of them is accompanied by the softening of an optical mode, the other does not have any dramatic effect on the Tkachenko spectrum. We also find an instability of the vortex lattice when the intercomponent repulsion becomes stronger than the repulsion within the components.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Vortex lattice of a Bose-Einstein condensate as a photonic band gap material
    (IOP Institute of Physics Publishing, 2009) Taşgin, M. E.; Müstecaplioǧlu, Ö. E.; Oktel, M. Ö.
    Photonic crystal behavior of a rotating Bose-Einstein condensate with a triangular vortex lattice is reviewed and a scheme for getting much wider band gaps is proposed. It is shown that photonic band gaps can be widened an order of magnitude more by using a Raman scheme of index enhancement, in comparison to previously considered upper level microwave scheme.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Vortex lattices in dipolar two-compenent Bose-Einstein condensates
    (American Physical Society, 2014-02-21) Ghazanfari, N.; Keles, A.; Oktel, M. O.
    We consider a rapidly rotating two-component Bose-Einstein condensate with short-range s-wave interactions as well as dipolar coupling. We calculate the phase diagram of vortex lattice structures as a function of the intercomponent s-wave interaction and the strength of the dipolar interaction. We find that the long-range interactions cause new vortex lattice structures to be stable and lead to a richer phase diagram. Our results reduce to the previously found lattice structures for short-range interactions and single-component dipolar gases in the corresponding limits.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback