Strongly interacting one-dimensional Bose condensates
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Recent observation of Bose-Einstein condensation in dilute alkali gzises led to a great interest in this area both experimentally and theoretically. The most important characteristics of a Bose-Einstein condensate is that it consists of a large number of atoms occupying a single quantum state. This kind of a feature seen in photons led to the production of widely-used photon lasers. Coherent state of atoms may lead to the production of atom lasers in near future. The well-known Bogoliubov model to explain the nature of Bose-Einstein condensates of trapped dilute gases is valid when the interaction between particles is weak. However, as the number of atoms is increased, the interaction effects lead to a significant contribution in the system. Several attempts were made to improve the Bogoliubov model and to explain strongly interacting systems but these treatments are accurate up to a finite strength of the coupling . One-dimensional Bose systems is important because exact solution of the homogenous problem exists. Also it is a good testing ground to study interaction effects since only two-body interactions play role in these systems. Furthermore, experimental realization of one-dimensional systems are attracting a great deal of interest into the present problem. We investigate a somewhat different method to study the properties of strongly coupled Bose condensates in one-dimensional space. It uses the socalled Kohn-Sham theory to solve the problem by considering the exact solution of the homogenous one-dimensional Bose gas. The new approach reveals that interactions are expressed by a ■0^ term in the strongly coupled regime in contrast to a 0^ term in weak coupling regime. The model is applied to several types of trap potentials by performing a numerical minimization. We also improve the model for the case of a finite temperature. We observe that the system has a non-zero critical temperature which suggests a real phase transition in onedimensional space. In the last part, we work on the stability of a two-component condensate in a harmonic trap potential. We find that for a wide range of system parameters either a coexisting or a phase-segregated mixture can be obtained.